AD=A097 010 TEL=AVIV UNIV (ISRAEL) DEPT OF MATHEMATICAL SCIENCES F/6 12/1
INITIAL-BOUNDARY VALUE PROBLEMS FOR HYPERBOLIC FQUATIONS AND TH==ETC(U)
JUN 80 D MICHELSON AFOSR-7B-5651
UNCLASSIFIED AFOSR=TR~-81-0253

| o3
"?evw




AFOSR-TR- 81-0258 "

: g ahe ::'
E ' . <::Ei;;;§;2:>

TECHNICAL REPORT

i {)

INITIAL-BOUNDARY VALUE PROBLEMS FOR HYPERBOLIC EQUATIONS
AND THEIR DIFFERENCE APPROXIMATION WITH CHARACTERISTIC BOUNDARY

Daniel Michelson

AWAOITH

Department of{Mathematical Qciencos
Tel-Aviv University ‘
Ramat-Aviv [:) I l(::
ISRAEL AFELECTE™™
> MAR 3 11981

3

| V7 w
E _

DTIC FILE Copy

THIR RESEARCH HAS BEEN SPONSORED IN PART BY THE AIR FORCE
OFFICE OF SCIENTIFIC RESEARCH (NAM) THROUGH THE EUROPEAN
OFFICE OF AEROSPACE RESEARCH, AFSC, UNITED STATES AIR FORCE, ,

UNDER GRANT AFOSR=78-3651.

lpprov.dror,ubliorbl.lloz

81 327099

(2R

Y

Lo o

—




UNCLALG L QD
SECURITY CLASSIFICATION OF THIS PAGE (When Datu Entered)

READ INSTRUCTIONS
ﬁq Réf('CRT DCCUMEN_T_A,TIO" PAGE BELORE COMIET IO 1t
REPOGBANLIME . 12. GOVY ACCESSION NOJ 3 RECIPIENT S CATA. ", , oy sabE 55
(\QJAFOSRATR-8 1 - #2583 paioi®d®
— gﬁ }"" . . - /E,_Y_'r“’i"}‘ REPORY A Bf g M 0 5 k5™
T gvirrac-gousnary yaLue prosLiws For yypemionic 1 i e -4
(cv . 14 aimy Py LA, i 7y o o ) IWTeh]y V’\.f .
: QUATIONS AND THI {R pl'f‘ FERENCE ;\PPR())\IMAI TION WITH . el
" | "CHARACTERISTIC BOUNDXRY. > £ RERFORMINS TG ITETRT TR
v, 7,
T7 auThHoR(s) T B ConTRACT Ju LmaN~ T wa i T
‘ 7 pantey micHELSON ) : -
(1@ ., It '/,.I/;C} 5ol (/ = |/ AFOsk-78-365]
. o
3 PERFORMING ORGANIZATION NAME £0.0 ADDRE 25 — T 10 BROG AN FL ET!E_'_.” FATyELT e
ARL A & W ORW Uk T s MEE RS
TEL =AVIV UNIVERSITY, L 6110 —_—
. - - . . . e Vo F . i
DEPARTMENT OF m-.ﬂy&rcm, SCTENCES — () A »-§<
RAMAT-AVIV, TEL-AYIV, ISRAEL [L [ Tag7 A0 v /ﬁ
11, CONTROLLING NFFICE NAME AND ADDRESS "?’:55"‘5“5 e

AIR FORCE OFFICE OF SCIENTIFTC RESEARCH/NA l I r.Jux.dX/

BLDG 410 NUNMBER OF Pares —

BOLLING AFB, DC 20332 HE S
14 MOINITORING ASENTY MAME 8 ADDRESS/f dilferen! from Contr-lling Oftice: 18 CETURITY TL_ASS af *h o rep ot

:)¢ ;2 PNCLASSITTED
Q‘Q/j Mo n TEEEC AGsiE AT e W AT
I . l SIMEG ) LE

16. DISTRIBUTION STATEMENT 7of thi~ epartj

APPROVED FOR PUBLIC RELEASE; DISTRTIBUTION UNLIMNITED.

e o — - 4

17. CISTRIBUTION STATEMENT 7.uf the abstract eriternd in [k 20, if Jifferent from Repaorr?

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Coniinue on reverse si fe if necessary and rdentify hy block number)
MIXED INITTAL BOUNDARY VALUE PRORBLEMS
HYPERBOLIC SYSTEMS
CHARACTERISTIC BOUNDARY
FINTTE DIFFLRENCE APPROXTMATIONS
STABTLITY THEORY

ABSTRACT (Continue on reverse side {f necessary and identifv by hllnrk numhee)
This work censists of two paris.  In the First, we considger onitiai=boandory

~value problems for strictly hyperbolic syvstems with conrtant coctticrontn:
>

RE—

llt}/\ux] *Eﬂ‘juxi =F, j = 2,3...,m, in the quarter space xy, (2 e A (VRN
'V‘ ) . . . . .

Y in the case of characteristic boundary, i.c. det/\ﬂ."hl’,.\' usine the feohmique o
A -matrix, we obtain an a priori estimate, which assures the continuons
dependence of the solution on the inhomogeneous terms of the cquaticn. . This
work generalizes the former results of Majda and Osher (1975 wloe 1o “he non-

FORM L V 7
DD |, )an 73 1473  E01TION OF 1 NOV 6515 0BSOLETE (. /('{UNC LASSIFIFED
. X LIINC S oo o
L'f (\ )(Q L+ —1 g— 27 SECURITY CLASSIFICATION 5F THIS PAGE (Whrn Data Fatered)
rs
A g e . )
M,’A "'v""'- "“',r' ".’.’.5 :‘ e N N o N Cee e S e
bt oottt S,




CNUCLAGS T THn

gt SECURITY CLASSIFICATION OF THIS PAGE(When Date Enterod) '

nonsymmetrical case, simplifies their proofs ad removes soge of  thelr aoump-
tions, In Part IT, we dovelop stability the v for Burstein differen o oo
approximating the above problem tm-2) with additional assumption .

! det (Aa +BoB1-0.  Particularly, the probhlem of construc¢ting rhe freiss svmmerrei
Far gendral multidimensional dissipative approximations v precolved, Chs ponon-
ing the lonly ohstacle in developing stability theory for such approsinn' Do i
the noncharacteristic case.

(‘l\\)‘h = &R\

E—

PNCT AL T D

SECLRIT Y Ct ASSIPIC AT N OF . .

A e
P A A




TECHNICAL REPORT

INITIAL-BOUNDARY VALUE PROBLEMS FOR HYPERBOLIC EQUATIONS .
AND THEIR DIFFERENCE APPROXIMATION WITH CHARACTERISTIC BOUNDARY

Daniel Michelson

P

Repartrent of Matheratlcal Colerocr
Tel-Aviv University
Ramat-Aviv
ISRAEL

THIR RESEARCH HAS BEEN SPONSORED IN PART BY THE AIR FORCE
OFFICE OF SCIENTIFIC RESEARCH (NAM) THROUGH THE EUROPEAN
OFFICE OF AEROSPACE RESEARCH, AFSC, UNITED STATES AIR FORCE,

UNDER GRANT AFOSR=78-3651.

AIR FORCE CFFICE OP SCI

ENTIFIO
NOTICE OF TRIVOMITTAYL TO nhe  RESKARCH (Arsa)
This tech:icit N A S N AT RT reviewad and isg

approved y., 510 R I .
e Ll ende 1AW '
Distributicn 1y uuliniseq, AW ACR 190-12 (7b).

A. Do BLOSL‘
Techntoal Information Orficep
. ) : "N-Wﬁm‘&hﬁmw4

e




TABLE OF CONTENTS

INTRODUCTION 1
PART [ DIFFERENTIAL EQUATION 4
SECTION 1 DEFINITIONS, ASSUMPTIONS, STATEMENTS
OF RESULTS
SECTION 2 A-MATRICES 9
2.1 Generalized eigenvectors, spectral pairs and
invariant subspaces 9
i 2.2 Linearization of A-matrix 19
2.3 Spectral theory of linear A-matrices 21
SECTION 3 THE CASE OF BOUNDED EIGENVALUES 28
3.1 Preliminary analysis of L{A',z') 28
3.2 The neighbourhood Q(;é) with sé #0 31
3.3 The neighbourhood Q(Cé) with sé =0 39
| SECTION L THE CASE OF UNBOUNDED EIGENVALUES 58
\ PART II DIFFERENCE APPROXIMATION OF THE INITIAL- 66
BOUNDARY VALUE PROBLEM
SECTION 5 DEFINITIONS, ASSUMPTIONS, STATEMENTS OF 66
RESULTS
5.1 Burstein difference approach. Definition of stability 66
5.2 Laplace-Fourier transform of the difference approxima- 70
tion
5.3 The Cauchy problem 72
S.h Assumptions and Conditions Th
5.5 The Main Results 76
SECTION 6 PRELIMINARY TRANSFORMATIONS AND RESULTS 79
6.1 Linearization of the difference problem T9
6.2 Preliminary analysis of the k-matrix L{x,;) 80




SECTION T

SECTION 8

SECTION 9

SECTION 10
REFERENCES

T.2

8.1

8.3

9.1

9.3

THE NEIGHBOURHOOD OF A POINT Lo = (Eo,zo) WITH
50 # 0,7 mod 2n and 2y = 1 .
Block structure of the k-matrix L(kx,f) near the

point ¢ = CO

Proof of theorems 5.1-5.3 in the neighbourhood ﬂ(co)
THE NEIGHBOURHOOD OF THE POINT 4 = (0,1)

Block structure of the x-matrix L(x,z) in a neigh-

bourhood Q(gé)

Construction of the Kreiss symmetrizer for the matrix
'

J .
Proof of theorems 5.1-5.3 in the neighbourhood Q(;é)
THE NEIGHBOURHOOD OF THE POINT g, = (m,1)

Block structure of the k-matrix ¥{k,z) in a neigh-

1)<C') =T + rMS(c') in the case Re K; =0

bourhood Q(Cé) for z #0

Block structure of the k-matrix ﬁ(m,;) in a neigh-
bourhood Q(Cé) for Zé =0

Proof of theorems 5.1-5.3 in the neighbourhood Q(cé)

DISCUSSION

89

107
114
114

133

1bh
156
156

169

179

191
19k

b i




-1 -

0. Introduction

‘onsider a ftirst order system of partial differential equations

Ju Ju Ju
Tulx.t) = ==+ A=— + | B, =— = F(x,t)
J 3 ’

3t x1 j=2 J x'j
. e ) _o (n) .
w th constant coefficients. Here ulx,t) = (u (X,t)y...5u (X,t)) is a
o Yunetion of the e ar.aboe. (X,t) = (Xi,,..,xn‘,t) and A,B1 are

vorant cquare matrices 7 crder n. We assume that (0.1) is strictly hyper-

i, 1. for all real w = :ml,m_), w = tmg,...,wm) with Iw( # O, the
<1, wouee Of the matrix iAwl + iBww ), Blw ) = XBJwJ, are imaginary and

ictintt. We assume that A 1s sinegular and has the form

;’w o 0 | a, r)‘l o 0
AE 0 A0 , where A = . 0, Ay = | J
a0 Al ] N a, {O a
Ny *)

I'ne ‘ector u(x,t) is then partitioned as - - (g s Ups uII)‘
W odencte by RO the half space : x 0, ~» x  +> , § = 2,3,...,m, by R_
. J +
the m- dimenrional real space 37 the .ecties x_ = \xa,...,xm) and by R the

nani o Line 120,

Je study the mixed inttial boundary vaiue problem

‘ Lu = F | kK
A) Lu n 0

11

SOl (B) ulx,0) = rix) 1in

+
() SutO,x_,t) = gix ,ti  in R K .

v

te b,undary operator 3 15 a constant (i&-,:*n matrix such that

‘oo nnd henceforth we use the transpnsition symbol ' 1n the following sense:

iv A,3,C,... are vectnrs or matrices then (A,B,C,...)"' replaces the usual

[ N VTN

il
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(0.3) S(Ker A) = 0.
For a domain G define
" - —nt :/2
"uLn,G i e u"L?(G).

‘aesider the problem (0.2) with £ = 0. The main objective in study of this

problem is to prove that under the uniform Kreiss condition the a priori

estimate
) 2 ) o2
(0.4) N lx,t)y 4 HIAu0,x Lty
n,R . xk n,R xR
6] -
> {Fix,t) 2 .
s Ky glx_,t) + === n,R xR )
- o+ n 0
n,R =R

holds for any n>0.
Throughout this paper we denote by K as well as by & different positive
constants. The above problem was completely investigated by Majda and Osher
in [1]. Our work consists of two parts. In Part I we use some concepts from
the thecry of A-matrices partially introduced by Gochberg and Rodman in [4]
to reprove the above estimate. The methods of A-matrices theory enable us to
simpiify the proof and t> remove some of the assumption in [1].

In Part II the same methods are used in investigation of stabirity of
so-called Burstein difference approximdtion appiied to the problem (0.2).
We restrict ourselves to the two space-dimensiona] case and additional assump-

tion that the determinant IAwl+Bw is identicaily zero for any w, and w,.

o ! 2
This and other technical assumptions cf this work are satisfied, for examp:e,
in the case of the acoustic equations. It should be noted +that Gustafsson,
Kreiss and Sundstrom developed in [1] a stability theory of general difference
approximations for initial boundary value problems in the case of >ne-space
dimension and non-characteristic boundary. As far as we kn:w, there is n> such
thcory for several dimensional case even for non-characteristic boundary.

There are two main difficulties in our investigation. The first one consists of

searching for the block stru-ture of some A-matrix depending on parameters

near a point where this matrix is non-regular. uch situation occurs because

the boundary is characteristic. The second one is construction of the Kreiss

bbbl
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symmetrizer for a block which is a perturbation of a single Jordan cell. For

2 general differential case such a symmetrizer was built by Kreiss in [2]. But
for difference approximations this problem was resolved in [3] only in the :cne
dimensional case for strictly nondissipative schemes. However, when the several
dimensional case is considered, such a problem arises a.so for dissipative
schemes. Being concerned with specific difference approximation we are able to
provide a detailed analysis of stability. But the same methods may be applied

to other difference approximations, the ampilification matrix of which is a poly-

nomial of some linear combination of the matrices A and B, from (O.L}.

J




Part 1. Differential Equation

!. Definitions, Assumptions, Statements of Results.

us apply to the problem (0.2) with £ = 0 a Fourier transform in x_with dua:
s = g£+in ,

shie o €R and Lapiase *ransform in t  with dual var-able
n DJooard -e L E <@ Donove the transforms of u and F by w and F. Then
]

problem (0.2) 1s converted b

y .o d d . S
(A) " (= y 0 Gl ' X f o= U I+A—— + iBlw !)u Flxs )
ax - . dx - - -
; 1 1
{B) su(0) = .
T3TinGLe (0.L, is ej.. -.ent T3 an estimate
o
F o+
- s . 1\ ,0112 . iA‘Q .\ I (xi)iR
2 wehe v ~ A0 <
ST & Res
ERRN'S W QU Y L. o Wlth Res»0,
oroSorplLaiuy vt omoait L 0 4 vee we the symbol from L,u and g and replacs i
N .t - L
; LS S .1 L wmit the symbol K in the no>tion 2f the norm
with o the iiferentia. ;e o D=5, lo connected a a-matrix Liv,w,s =
Teiaet B RS oot *1 o poayrnomiar has the form
< P, -} ¢./W,G)AJ with
s=() ¢
1 . 2= isrib lw) VAL A L]
r- ? ’ IS | .|| ll|
Heoosooho(wy i3 a teft upper element 51 Biw) and 18 a iinear function of ..
|
vor lows from strict hyperbo o ity that 1or real s and A and Liraginary w
. P : . . !
e determinant |LiAywn,- )| Loren Theretore aiso bl]&n) is real for rea: ».
<ithout loss of generality, we nuy oozume that b (w) = 0 {(one shouid rep.ace
the parameter s by = = <+.b 1\m)) For s = 0 the highest verm :n (1.3;
eshes . We consider Wl cases:
“siie ot the polynomial  [Lr-,0,03]  vanishes, for any A and  w.
L




wted in [1]  the case of bounded eignevaives.

Case Jr o the volynomial |L\«,w,0)l does not vanish ldenticully accoriing tno

o . - L=
v for any value of  wER w # 0.

Thic o is o toe cnve of unbounded elgenviues described in [,].

et we consrder Initiali, the {1737 ~ase

Trornlloes Trom strict bpporbo o rr hat the uerne o0 0 LY e e ggme
ensiong sodmneinn Ke the it

Avenarrr o L, dim Rerva Ay DRy DoTor oany conpLex s N

(w! = ¥p Ker'a+=iB V) - the space generated by the kerne.s >f

As+ob ) tor fixed « oanionl. o.mplex b .

We make Lhe second

S rfor any complex

sumption 1.2. dim Vo;w\ W
Under assumption 1.l we prove in cubcection 03 the folleowing important

Casu LT mut2d there il R, ¢ for some veo = D thore

. < RSN “ - IO

boundary condition (1,.) (RY  such that the problem is proper!y po

REEN *her the matrices A and = SatLaly v

cofLrate WD) he!

Hivoe rorosyvrmeti.o such boundnry sonLtiom existn, o0 oDulh
Jystems wsaumption 02 s oready satisfied.
o the cnse o = 3, 1bomuy be eastitiy verified that 17 L amd Bowl o ome we .l -
a¥ a7 have no o common kerne: for any complex s fF 0. 0 oo
Toone L. L. are tultilled.

‘bt may be alsoe proved that 17 4 and Bow! (Tor rea. 0 F® 1 oare symmetsic ana
itive common kernei, ther e aumpt, o L.l 18 net trus (Uor the same 4. we

Ttestr s that Y oconder e L3 e true, 1.e c A ana b] are Symeet v

rea;  w = 0 the Tatrices 8 ind o Bioed have no conmtn kernei, then
capt ool e true.
in wne second rase no additicons, acsumption is regquired.
et g retierto the probiem il 1 dn the general case of hounded or uanbounded

creoen e s boatowine [T we detine e LR Ay an clfFentun.tion Y the

= - D B KIS v

VoL T e ey _.2 is pertessary Ior the we. _-posednes: oF The 1 orlen

oy
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vroblem (1.1) corresponding to the eigenvalue s, with Res>»0 If 2 is o, .70 ..
of the homogeneous equation:
(l.u) p e, s« + iB{w)p = 0

dx

1

w1th boundary condition
L 1.5) 50(0) = 0 i

it may be shown as in [2] that for Res>0 the characteristic equatizn
11.6) |LiA,w,8)| =0

has precisely &-1 eigenvalues A with PRea < 0 and n-L oSnes with Fe:0
Although the matrix A 1ig singular, the determinant EL(a,w,s)l does not

vanish for all A if s = 0. Therefore if Res»0, we may apply t> the eguati:.

(1.4} the elementary theory of ordinary linear differential eguations. Thuz, !

et ion (1.4) has exactly £-1 1linearly independent solutions

LILT) @l(x,w,S), (pg\x,wss)""3(<p2_l(xgwas) in Lg"\OiX<°).

Let these 37lutions be ortpnonormalized at x = 0. TDencrte 1
A 3 = 3

.2 N\w,~/ D[wl’wE"" f=17%=0

Then the uniform Kreiss condition (UKC) is stated:

LUKC) There exists a constant & » 0 such that |N(w,si|.8 for any 1u,5: with

Res -0,
. 1 ( ! . — . | v
Given a vector @ = kw( ),wkg),...,w(n)) we define ¢ = 1@ 2),® 3),...,w\r .
“rom (0.3) follows that S actually depends on ®. orthcnormaiizing the e--

1 ADRN! GJ(O,Q) instead of wj(O,g) we define
1.9) Nw,s) = s[o,,0 TS

"hen the modified uniform Kreiss condition, denzted as (UK, is farmu’atend:
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]L3531 There exists & constant §-0 such that |[HN(w,s)! 2 6 for any (w,s) with

Res~0.
Maida and Osher in [1] used the condition (UKC) and called it a uniform

Kreiss condition.

Let us denote r = (w,s), w' = w/IAI,s' = s/|A|, ' = (w',s').

Tet
(]._LJ,\ Q((‘é) = {C“C'-C‘6I<C and w' I‘eal}

be a conical neighbourhood of the point Cé = (wé,sé) with real wé. 1t wiiz
be shown in Section 3 for the case of bounded eigenvalues that for any
L' with Res! > 0 including s! = 0 there is some neighbourhood Q(cé) such

" 0 0
tha* the solutions in (1.7) are defined for any cEQ(cé) with Res>0  and the

vectors wj(O,C) depers o ¢' only, are continuocus functions of ¢' at the

point ;é and are independent at this point. Moreover, the shortened vec-
rs GT(C,Cé) are 11so independent. Therefore the determinants IN(;)‘ and i

V]

+
C

|

=1

{¢)] Jdepend actually on ' and are continuous at the point 56.

v

For a fixed w 5. with Res,. >0 is an eigenvalue of the problem {(1.1) iff

0’ 70 0
ti.11) Iyl = 0.

Av in [2] we define s, with Fes, = 0 as a generalized eigenvalue iff (i.1.

Sy T wqety ! and |LO| F 0.

n the case of bounded e¢lypenvalues we may replace the matrix N(g) by Nig:!

holds for some point

in rhe definition of the eigervalues and generalized eigenvalues. The conditions

JKCY  and (UKC) are therefore equivalent and may be formulated:

The problem (1.1) has no eipgenvalues or generalized elgenvalues s with Res:l.

t
—
ro
~—

Jeicrtunately, in the case of unboundea eigenvaiues the above conditicns are not B
eguiva.ent. For cé = (mA,O) the vectors wh(o,c') are, generally spoak.ng, fot

continucus at the point Lé. However, we shall see in Ccction U that the

shortened vectors Gj(o,c' are still continuous. Therefore it is possible to

<efine the generalized eigenvalues by using (1.11), and (UKC) may be formu.ated
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as in (1.12). The main result of this work is
Theorem 1. The condition (UKC) is necessary and sufficient for the estimate

11.2) to hold.

Thus we extend theorem 1 in [1] also to non-symmetric systems at least 1in
the case of a half-space and constant coefficients. For the case of unbounded

eigenvalues  assumptior 1.6 in [1] may be dismissed and for bounded eigen-

values assumption 1.10 in [l] about singular block structure is replaced
by the natural assumption 1.1 and additional necessary assumption 1.2 for non-
symmetric systems,
in [1] there is given alsoc a counter-example (Bl, p. 631) of a problem (0.2)
with non-symmetric matrices A and B such that (EEE) is satisfied, but
estimate (0.4) 1is false. This is the case of bounded eigenvalues, but the
condition (UKC) 4is not fulfilled. The reason of this seeming contradiction lies
in the fact that the matrices A and B have common kernel and do not satis-
fy the assumption 1.2.

We summarize now the contents of this part. It consists of four sections.
In Section 2 we introduce some concepts from the theory ot A-matrices and pro.e
some lemmas which are useful also in the Part II.
In Section 3 the case of bounded eigenvalues is investigated and in the same
time the above mentioned theorem 3.5 is proved.

'n Section L4 we finally consider the easiest case of unbounded eigenvalues.
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2. A-matrices

2.1l. Generalized eigenvectors, spectral pairs and invariant subspaces.

Let L(A\) be a square matrix of order n with entries, which are holomorphic
functions of A in a domain 9<C. Such matrix is also called a A-matrix. The
point AOGQ is an eigenvalue of L(}) if IL(XO)l = 0. The set of all eigenvalues
of L(X) is called the spectrum of L(A) and denoted by o(L). The matrix L{(})
is regular if |L(A)| # 0. Then for any compact D= the set o(L)MD is finite.

We say that L(A) is singular of order one if |L(A)| = 0 and rank L(A) = n-1
for some AEQR. The points AEN, where the rank L{A) < n-1, form so called dis-
crete spectrum of L(A), which is denoted by cd(L). It is obvious that for
any D the set od(L)ﬂD is finite.

Let XO€0(L). There exists holomorphic vector function @(A) with @(A.) # O

0

such that the function L(X)@(X) vanishes at the point A.. Following Gochberg

o
and Rodman in [h] we call @©(A; a root function corresponding to XO. The order

of X, as a zmerc of L{X)w(X) is called the multiplicity cr ©(A) and the vector
w(O) = w(AO) - an eigenvecter of I.(X) corresponding to Age If @(A) is a root
tunction of L(A) of multiplicity q corresponding to Ao and

(J) d
@ (A=)
0 0

@A) =
J

then the chain of vectors w(O)’w(l)’...’w(q-l) is a Jcrdan chain of L(A) cor-

(1) (g-1)

responding to the eigenvalue AO’ and the vectors @ I 1)

He~18

are called
renernlized eigenvectors corresponding to AO.
A root function QO(A) is called a singular root function of a singular A-matrix

() if L(A)@O

L(A) and is called a singular eigenvector of L(A) corresponding to A. If L())

(A) = 0. 'The vector wo(x), when not zero, is an eigenvector of

T owineular of order o fohan Lo any AT Zorresrond nxactly one singular
sigenvector. Al eigenvector corresponding to a point XOEOd(L) is called reg-
ular if it is not singular for the same AO. Similarly, a root function o))

correnpaonding to such point AO is regular if the eigenvector w(ko) is regular.
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Let wﬁ(k) be a root function of L(A) of multiplicity q corresponding t.

an eigenvalue A We denote by Xl(AO) = (¢{O),w§l),...,¢éq-l% 3 matrix

0"

tormed by the column-vectors of the corresponding Jordan chain and by J‘(AC) o
1 ;

Jordan cell of the size q with the eigenvalue AO.

1f ml(l),wg(x),...,mk(k) are some root functions corresponding to Ay» we form

a matrix

X(Ao) = (Xl(AO), xe(xo),...,xk(xo))

and a corresponding Jordan matrix

J(x.) = diag(d. (x.),J. (A ),...,Jk( 1,

0 17,0772 AO

where diag(Jl,JQ,...,Jk) denotes the square block diagonal matrix whose main

diagonal is given by Jl,JO,...,J The sequence formed by the column:of X(:

K* ~\
will be called a Jordan sequence corresponding to AO’ and the pair

(X(XO),J(AO)) is a spectral pair corresponding to A In this work we oiten

0"
identify a matrix X with the sequence or even the set of its column-vectors.

Therefore we shall call also the matrix X(AO) a Jordan seguence. The space

spanned by the eigenvectors wio)(A ),wéo)(x Yaenes io)(A

0 0 is cailed the

O)
e.renspace of the Jordan sequence X(Ao) and any vector belonging 1> this

cpace is called an eigenvector of X(AO). If the dimension of the above eil.cen-

svace is k and any eigenvector of X(AO) is not singular, then the sequence

X(Ao) is called regular. For a regular matrix L{A) we replace the singular

eifrenvector in the above detinitiun by 0. v Al,\q,...,k, are difterent

G

eigenvalues of L(A) and (X(A1)’J(A1))’ izfst, are the corresponding spectra:

pairs, we denote




T

X = (X()l),...,X(At)), J = d)ag(J(Al),...,J(At)).

Then the matrix X is called a Jurdan sequence of L{A) 11 & and the pair (X,J)

is the spectral pair of L(A) in . The J.rdan sequence X is called regular

if X(AJ) are regular for all i7jst. A vector w(O) is ralled an elgenvect.r
oo (0) . . o .
X it o is an eigenvectur ot some X(Aj), 13t

Any l-matrix L()) is equivaient in { tu a diag_nal matrix

{2.1) S(ML(AMR(A) = D(r) = diag(dl(A),dg(A),...,dskA),O,. .,0)

where S{A), R(A) and D(}‘ are hulomorphic in £, the matrices () and K{a;

are invertible and di+l(x)/dl(A) are holomorphic in @ for 1lsics (see [5] 1o

detail). If L(}A) is regular, s = n, and for singular A-matrix uf crder cne

s = mnrl, where n is the order ot the squuare matrix L{A). let QU be a1 b.ounded

A all the different ru .ty «t 4 4.

27770y o

domain with ﬁdCQ. Denote by i, ,A

N It may be assumed that dl(k) hao the torm

4. 9. 9.
Ly 2 t
(2.2) di(x) = ()\—Ai) “(A—)\Q) ! ...(A-At) S S

where the integers qij form for each l:jit a non-decreasing sequence.

it e~—101

ey

¢

is regular, the number qJ = qi. 15 8 multiplicity ot the eigenvaiue +, uanrn
i=y M !

is equal to a multiplicity of AJ as a roct of the rharacteristic equu’ ! n

|L(A)| = 0. Taking wi(x) equal tc the 1-th column .t R(A) we voneiude that

mi(k) is & root function ot muitipticity corresponding to eigenva. .e

qij

1¢j<t. The root functions wl(A),wgkk),...,ws(A) generate tor an eifFenvaluc

" .
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a spectral pair (X(XJ),J(AJ)), which is called a canonical spectral pair of
L{}) corresponding to AJ. The eigenvectors of X(AJ) are linear combination of
‘pluJ‘), “’2“3)"”""5“4) - columns of the matrix R(AJ). If L()) is singular
of order one, the last column of R(AJ) iz & singular ~igenvector corresponding

to \,. Since the columns of 3(A,) are independent, ih¢ sequence X(A,) corres-

J J J
ponding to the eigenvalue A, is revuiar. Collecting all the pairs
J
(X\Aq),J(AJ)), 1 £ J s t, we pet the canonical spectral pair of L(A) in QO'
o
whiclh is denoted by (X‘2 ’Jﬂ ). The segquence XQ is called 8lso a canonical
0 0
Jordan sequence of L{()) in QD and s obviously regular.
T
Let now L(A; = Z A‘A‘ be & matrix jclynomial, where A‘ are nxn matriceu.
J=0 ‘

We consider first the regular case. The spectrum o{l) in € i finite. Taking
a Lournded domain QO whict contains the spectrum o{l.) we consider a canonical

spectral pair of LiA) in I wirich i denoted bty {XF.JV) and ¢ called the

Cimilarly, XF is the finite canonical

Jordan cemuence. We say that & = @ s an eigenvaiue of LA of multiplicity

finite canonical spectral pair of LA},

iy = 0 ir osn eigenvalue of the pulynomial

£ the same multiplicity. Following sohbtery and Rodman ir (4] we dente by

VR

(XQ,JQ) a canonical spectral pair ot L fa) correspondinges toe » = (., We

cali (XQ-J,) a canonical spectra. pair of Lia) at infinity and X, n ovanonical
at infinity. Then X = (X

Jordan sequence of L(A sX ) in called a cancnical

v
h
1’

rdan sequence of [1A) in infiuite complex plain 2r simply a canonical Jordan

coquence of LIA), and "X, Y, where o= Adingl 0 ), i oA canoniceal cpectral
1 el ) i
pair of L(A).
Let now L{}) be a ~insular matrix jolynomial of order 1. Then the discrete

spectrum cd(L) of L{A) in C i: finite. The point A & @ | congidered as a
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point of discrete spectrum of L{A) if A = 0 belongs to od(L(w)). In the same
way &s above we define pairs (XF’JF)’ (Xm,Jw) and (X,J). We say that the se-

)

quence Xmis regular if it is regular with respect to L(m (1) and the eigenvalue
XA = 0. Then the definition of regularity may be extended to any Jordan sequence
of L(A) in the infinite complex plane. Obviously the canonical Jordan sequence
X, either in the case of regular L{(A) or in the cuase of singular L(A) of order
one, is a regular Jordan sequence. If L(X) is singular of order cne, "he adjoint
matrix adjL(A) is not identically zero. Taking wO(A) equal to some non zero
column of adjL(A) we get a singular root function of L(A) which is a vector
polynomial. We can assume that qb(k) never vanishes, otherwise the vector

ub(\) may be reduced by a common polynomial divisor. Let wo(x) be vector poly-

ncmial of degree - For any A_ the vectors

0
(q.-1) alo ()
(0) (1) o (30 1 9%
(Y ) . e .
wo (AO))WO (XO),---ADO o where (DU (AO) 3 Kk A=A
ai 0
form a Jordan chain of L(X) corresponding to the eigenvalue AO' For AO = ®

- -2)
the corresponding chain is defined au q%?O 1%0),¢éq0 (0),...,wéo)(0) and is
()(

actually a Jorden chain of L A) corresponding to A = 0. The above chaing
are called singular Jordan chains of L(A) corr.sponding to AO' If wO(A) ic

another singular root function of L(A) and wO(A) is an irreducible vector poly-

nomial, it is easy to show that wo(l) = ch(X) where ¢ # 0 iv a constant.
Let VO be a space spanned by all the ninralar eipenvecters of L(A). Then
VO is called the singular eigenspace of [.(A). "irnice all the singulur eipen-

vectors of L{(A) are given by wO(A). we can represent

(q.-1)

(10

for any AOEC.




r—
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Finally we consider the case of a linear A - matrix, i.e. L(}) = A1A+AO.

(0) (1) (a-1) _,

If a matrix xl(xo) is formed by the column-vectors @ 0" 0 a

Jordan chain of L(A) and Jl(ko) is the corresponding Jordan cell, we may write
(2.4) Alxl(AO)Jl(xo) + AOXl(AO) =0 .
Similarly, if (XV,JF) is some finite spectral pair of L{A), then

(2.5) AjXpdp + AXp = 0.
Since L(m)(k) = AL{1/}) = AOA + Al’ then for a spectral pair (Xw,Jm) of L(A) at

infinity we have

(2.6) AX_+ A

1 Xme =0.

0
Combining (2.5) and (2.6) we get

F

A=J 0 ]
0 =AJ +1
oo

(2.7) LV (XpaX,) = (A Xp,A X ) [

In the rest of this subsection L(A), if not mentioned specially, is a linear
singular A-matrix of order one.
The next two lemmas follow trom the canonical form of a singular pencil

of matrices described in [10].

Lemma 2.1. The dimension of the singular eigenspace VO of L{A) is equal to

9y where qo-l is the degree of the 1rreducible pclynomial singular root furc-

t.ion ¢h(x).
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Procf: Taking A, = 0 in (2.3), we note that it is enough tc prove the indep-

0
(qo-l)

(O)(O).w(l)(O),...,w (0). Let us add to this chein

endence of the vectors wo 0 9

(an)
the vector wb © {(0) = 0 and denote by X0 the matrix formed by the column-vectors
of the extended chain. Similarly to (2.4) we have AXT, + AjX, = O where J, is
a Jordan cell of the size q0+l with eigenvalue A = 0. Assume that the vectors

) Q-1
{qéj’(o)}Jio are dependent. Ther.there exists some vector

(u(o),u(l) (q) ! (

u = seeeyl 30,...,0) with u a) # 0 and quO-l

such that Xou = 0, Define a sequence of vectors {w(‘j)}q by wéj) =X Jq-Ju.

o ’3=0 0“0

(q) _ -
0 = Xou =0

Obviously (0) (n) )
1 0

wo = u )

5 (0) # 0 and ¢

Defining wO(A) = ? wéJ)AJ we get
J=0

_ q-J (g),q+1 _
(A1A+AO)wO(A) = J?O(A1X0J0+AOXO)JO urt + AT =0 .
Therefore wO(A) is a singular root function of L(A) and its degree is less than
4, l.e. less than the degree of wO(A). But it was shown that wO(A) should be
proportional to wb(k). This contradiction proves the lemma.
Corollary 2.1. Let Xl,lq.---,Xt be distinct complex numbers (including A = =)
q.-1

i
()\i)}J=O such that

\
For any above A, let us define a sinpular Jordan chain {¢%”)

i
t

Z qi = qO. Then all qo such defined vectors form a basis of the space VO'
i=)
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(J)

Proof: The vectors ¢, (Ai) may be represented as a linear combination of the

0
D07 )y L (0) (95-2)
basis {¢b (O)}J=O towg (Ai) = (wo (0),...,¢b (O))cij, where i
J q,-1 (q,-3-1) '
1@ o7t . VRN
ciy = 71 Y (L, heaesd ) |A=*i' If A, = = then 9y (1) = @, (0).

The columns cij form a square Qp%9, Vandermonde type matrix. It may be easily
shown that such a matrix is invertible. Thus, the corollary is proved.

Lemma 2.2. Let X = (XF,Xm) be a regular Jordan sequence of L(A). Then the
vectors of the sequence are independent of the singular eigenspace V
Proof: Let J = (Jp,
first the case when A = » € g_{L) and therefore (Xm,Jm) = @. From {2.3) and

0"
Jm) be a Jordan matrix corresponding to X. We consider E

d
(2.4) we get AOVd:AlVO. Denote by U the space of all complex vectors u
such that XFuEVO. Then for any u€U we have AlXFJFu = 'onFu € AOVdc AlVO. ,’
Since A = » ¢ cd(L), it follows that KerA; & V, and hence X Jou € Vo
Therefore JFu € U and the space U is an invariant space of JF’ Let uO€U
be an eigenvector of JF corresponding to some eigenvalue AO. Then the vector L

XFuo is an eigenvector of the sequence XF and, hence, a regular eigenvector

of L({A) corresponding to the eigenvalue A Since X uO€V0 we can represent

0’ F
qoil
Xu, = .. (2,)
F70 520 Jo')
where all Aj are finite and distinct. Then
95-1
0= (A1A0+AO)XFuO = Ay jzl cj(xo—xj)wo(AJ)
and therefore '
A=A A =c ®
121 cj( o j)w»o( J) qowo( )
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But according to corollary 2.1 the vectors qb(Al),wb(Az),...,¢b(Aq _1),¢b(w)
0

are independent. Therefore X u, = cowo(ko) and XFuO is a singular eigenvector.

Let us consider now the case when A = = € cd(L). Fixing some point

Ao @ c((L) we introduce a A-matrix

0 i

4" Y 4
L{)x) = (A1AO+AO)A + AO = AIA + AO

and define a function f(A) = A/(AO—A). Then
L(A) = (1-2/2)T(£(A))

~ -1 . . . By . .
and wb(x) = wb(f (X)) is a singular root function of L{A). It is obvious that

v
L(A) is singular of order one with the same singular eigenspace V, as the

matrix L(A), but A = = ¢ od(f). Dencte

M = /MF ° t Mo = £(J.) = J (A I-J )'l M o= (A.J -I)
\O M s Where P = ¥ = F O = F s 0 0w M
x

Y
Then to an eigenvalue Aj of J_ corresponds the eigenvalue Aj = f(Aj) of MF

F

and the corresponding eigenspasces of J_ and M_ coincide. The same result

F
holds for J_ and M_, where %w = f(w) = -1. Therefore, if u

of M, then Xu

0 is an eigenvector

0 is an eigenvector of the sequence X. The pair (X,M) is not a

spectral pair of ﬁ(x) but it satisfies the relation XIXM + XOX = 0. Then

repeating our first proof for the matrix ﬁ(k) and the pair (X,M) we arrive
at some eigenvector Uy of M such that Xu is a singular eigenvector of E(A)

and, hence, of L{A). But Xu. is an eigenvector of the regular sequence X.

0
Therefore the space U = 0, and the sequence X is independent of V

0"
Remark 2.2. If L/A) = AlA+Ao is regular and X is a regular Jordan sequence
of L{A), then taking in lemma 2.2 the space VO = 0 we prove the independence

\
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of vectors of the sequence. If (X,J) is a canonical pair, the number of vectors
in X is equal to the number (counted with multiplicities) of finite and infin-
ite eigenvalues of L(A), i.e. equal to n. Therefore the vectors of a canonical
sequence X form a basis in c”.

For & linear A-matrix it is possible to define the concept of invariant

space. The space V < c® is called an invariant space of L(A) = AjA+A, with

finite spectrum if AOV c Alv. Similarly, it is called an invariant space

of L(A) with infinite spectrum if A,V < A.V. The direct sum of above spaces

1 0
is called an invariant space of L(A). An invariant space is regular if it does

not contain singular eigenvectors of L{(A). An invariant space is singular if it

is contained in VO'

Let V be a regular invariant space of L{A) with finite spectrum. If
Ao ¢ od(L) then A Ay + Ay is an isomorphismon V. But (A1A0+AO)V €AV and

therefore also Al is an isomorphism on V. Let X be a basis in V. Then we can

represent AOX = -A,XM. Moreover, M may be brought to the Jordan form, so that

1

we can write AlXJ+ AOX = 0.

But then the pair (X,J) is a spectral pair of L(A) and the regularity of V im-
plies that also the sequence X is regular. Analogously, for a regular invar-
iant space with infinite spectrum we have a spectral pair (X,J) with a regular

Jordan sequence X such that

+ = 0.
AlX AOXJ 0

For a regular invariant space V with finite spectrum we define A as an eigen-

0
value of L(X) in V if there is some eigenvector of L{A) in V, which corresponds

to AO' The spectrum of L(A) in V is then denoted by o(L,V) and consists of all

eigenvalues AO' If V is with infinite spectrum, then

(=)

AO € o(L,V) iff 1/)\o € o(L' ",Vv) .
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Now lemma 2.2 may be formulated in terms of invariant spaces.

Lemma 2.3. If Vl’v2""’vt are regular invariant spaces of L{A) with disjoint i
spectrum, then they form a direct sum V = V19V2®...@Vt which does not intersect 1
the sinpular eigenspace VO.
2.2. Linearization of A-matrix. m
We discuss here some linearization of a matrix polynomial L(A) = Z AJXJ
Jj=0
(for detailed description of linearization of A-matrices see [5]). Define
o-1 o..0
Xo =joo-1.. 0 |y K, = diag(1,1,...,1,A ) .
(2.8) .
-1 4
By By An-1 ;
. L A a,
Then the linear A-matrix L{A) = A;A + Ay is called a linearization of L(A).
If L()X) is of order n, then t(x) is of order mn. 1
Introduce matrix polynomials of order mn
—_ - —_ —
) .
1 0 0. 0 M) B () oo B ()T
AT I O . 0 -1 0 0
2 ] = =
(2.9) F(M)= |20 1 | and B(}) 0 1
% 1 . 0 . . .
AT . .. AT Lf) . e EJ

where Bl(A) =A)\+A _, and B3+1(” = AB,(A) + A for 1 < J € m-2. Then
the following identity holds

= T - .y 25 i B a1 S L i




(2.10) E(A)E(X)F(X)

o
=

.

Obviously, E (A) and F—l(A) are matrix polynomials too, so that the identi-
ty (2.10) proves the equivalence of the linear A-matrix f(k) and the expansion
f f i i .

I(A)@I(m_l)n of the matrix polynomial L(A)

The spectrum of E(A) coincides with the spectrum of L(A), and if @(X) is
a root function of L(\) of multiplicity g corresponding to an eigenvalue AO’
then

@A) = Fl(A)w(A)

Y
is a root function of L(A) of the same multiplicity and corresponding to the
same eigenvalue RO. Here Fl(k) denoctes the matrix of the first n columns of
F(A):

FL(A) = (T AT, .. A"ty

if L()) is singular of order 1 and wO(A)—corresponding singular root function,
then %O(A) = Fl(k)wo(A) is a singular root function of the A-matrix E(A), which
like L{(X) is singular of order one. If wO(A) is an irreducible vector polynomisl

v
ot degree g.-1l, then $ (A) is irreducible too and deg @ . (A) = g.+m-2. There-
0 0 0 0

4Y)
fore the dimension of the singular eigenspace %O of L(A) ic equal to qo+m—l.

To compare the matrices ﬁ(k) and L(X) at X = » we consider the matrices
= oy = ad) ana L1000 = AL

Define F(m)(k) = (F(A))' and

e - \ R e I e e T .
. L A .
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i 0 0
2.11) B0 () = ? ' ’
CalA) Co (1) c (a1

a0y e

Gere Upthi=aan nd ©L (&) = C (X)) = AAj+l for 0 ¢ § € m-2. Then the follow-

ing equivalence nolds

=) ) et () (=),

(2.12) b A)F =1 A) .

(m-1)n

Similarly, if ¢@(x) 1is a root function of L(m)(A) of multiplicity q corres-

peonding to an eigenvalue A then

03

()

is a root function of L (A) of the same multiplicity corresponding to the same

An- Here Fim)(x) consists of the m last columns of F(“)(x) i.e.
P00 = 0, LTy
£.3. Spectral theory of linear A-matrices.
TLet L{A) = A1A+AO be @ regular A-matrix. Denote by Al,A?,...,At all the

different finite eigenvalues of L()) ~f multiplicities 4y59p5--+5q, and by

A= o the infinite eigenvalue of mulitiplicity q.- Let Fl,F2,...,Ft be posi~-

tive oriented disjoint Jordan contours around the points Xl,AQ,...,Xt and
Fw be negative oriented one surrounding all the contours above. Denote by FD
the positive orienterd cortour obtininei from I', by mepping X - 1/X. Define
linear operators
=L -1
b= (ond) (ALX+A) 7 ALdX, § = 1,...,t,
) 1 0 1
r,
J
L 4 . LY “a ,,.‘)4_‘,!¥,1_ ‘f”‘“‘“""mﬁ::'ff‘; i L B




oo

P =(2ni)"lJ (n,+A N"1A dA.
S R«

0
Using the resolvent equation

oA ) = w0 - w)

we prove by standard methods that Pj’ J=1,...,t, are mutually orthogonal pro-

jectors. Applying the transformation A+1l/X we get

B -1 . _ -1 -1
P = —(owi) Jr (Al)\+AO) AO)\ ]ax =1 + (2ni) § (AlA+AO) Aldx.
. r

o

Therefore the sum Pl + P2 +...+ Pt + Rm = T and En is also a projector orthog-
P
2

onal to Pl"" £
Let Qj be a neighbourhood of 2 containing the contour T,, Denote by

@(Qj) the space of vector functions @(}) = (w(l)(k),...4p(n)(x)) analytic in
Q.. Define an operator Qj : @(Qj) — " by

J

Qjo

1}
N
=3
[=H
|
— S
ol
}
A"_'
>
=R
>
(7]
>

Obviously, Qj(Al@) = ij for @(A) = const., so that Im Pj c ImQj. Let c{}A) be a
scalar function analytic in Qj. Then in the same standard way as one proves
that P? = Pj we may show that

(2.13) Qe(r)r 0, (e)) = a (c(X)o(n)) .

J

Substituting in (2.13) c/x) = 1 we obtain Qj(Ale(@)) = Pj(qu) = Qj(w). There-
fore Im Qj c Iij and finally

(2.1k) ImQj = Iij .

Let the dimension of Iij be d,. There is some nxd, matrix function ¥, ()

g

analytic in 25 such that the columns of a matrix X, = @,(y,())) form a

J 3
basis in Iij. For any ¢ € Q(QJ) the following identity holds

(2.15) AG (())) = (Qni)‘l % (L(x)-Alx)L'](A)w(mdx = —AIQJ(MD( M)
' T
J
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';her‘efOI e
A Q_ A‘{f A + A X = O .

Using (2.13) we transform Qj(ij(x)) = Qj(xAlqj(wj(x)) = Qj(xAlXJ). Repre-

sentin (AAX,) = XM, we obtain
ing QJ( 1 J) 1M

2.16 AX M, +AX =0.
( ) 1733 0
Similarly for ImP_ there is a basis consisting of columns of a matrix XuD such
that
: + =
(2.17) Ale AOXwa 0
It follows from (2.13) that

Q AIA X = AI lA ; AALX =0 Aq XM, = . =X Ml
J(‘ 1 j) QJ( 1QJ( 1 J)) ‘J( Al j) 3 . 3y
ilence
( j) - ( ) J
Q X, (A=), = X.(M.-2.I .
Jj(Al J J) J J 4
-q

The matrix L (A) has singularity of the type (A—Aj) J at the point A = A

J

Therefore Qj(flij(k~kj) 7Y=0 and the matrix Mj has the only eigenvalue Aj.

Sfimilarly, the matrix M_ has the only eigenvalue XO = 0.
Denote

X, = (xl,x T

- ), X = (xF,xw), T = (AlXF, onm), MF = diag(Ml,...,Mt).

27" t

Then (2.16) and (2.17) may be written as

A O ) - !

0 -AM +I
[e:)

(2.18) L{(V}X = T<

i
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Since the space Cn is a direct sum of ImP,, J = 1,...,t,2, the matrix X is

J

invertible. For X ¢ o(L), L(A) is also invertible and so is T. Then for the

A-M | [a-My| oo [A-M, | and from

determinant of L(A) we get |[L(A)| = const.*
the decomposition

42 %

4
LAy = const. (A=A ) T - (A-2,) 7 ... (A-2)

2

q.
it follows that IA—Mj| = const. (X—Aj) b for §=1,...,t, and therefore
Then we have also

Using the notion of the invariant space we conclude from (2.1%) that ImQj,
J=1,...,t, is an invariant space of L(}X) with finite spectrum and ImQ
i an invariant space with infinite spectrum.

Choosing the suitable matrices Xj we can assume that the corresponding
matrices Mj are in a Jordan form with the eigenvalue Aj. We may then assume
that the columns of X form a canonical Jordan sequence of L{A) {see the
proof of lemma 2.5). We need the above spectral theory in order to investigate
a perturbation of a linear A-matrix. If the matrices A, and A, depend analyt-

1 0
ically on some vector parameter s in a neighbourhood of a point s = then

s
OS
the defined above projectors Pi and operators Qj depend analytically on s near

the point S 1 the matrix Mj(so) is in a Jordan form, such form, generally
!

-, cannot be prescrved. There is a complete description of an analytic

[

perturbation of a Jordan matrix (see [6]). If)dj(so) is a Jordan cell, the per-

turbed matrix Mj(s) may be written in the form

—
e L(s)+xr 1 0 7]
q.~-1 J
J
(o0 M.(s) = |e (s) A 1
J qj-2 J
1
eo(s) 0 AJ

AL Ot ik P S
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or in the form
A, 1 0 0
J
2.20 M.(s) = |0 A 1 .
(2.20) §(s) ;
1
eo(s) el(s) eq._l(s)-ﬂ\‘j
— J .
Obviousl
M ' ( ) ( N
A=M.(s = (A=), - e s) (A=A, -...—e (s).
IEROIENEEY INOIEEW o(5)
J
The characteristic equation |L(A,s)| =0 in a neighbourhood A€Q, for s close
erough to 54 1s equivalent to the equation !A—Mj(s), = 0. Therefore the A-poly-
nomial |A—Mj(s)| is & Weierstrass polynomial of the function |[L(A,s)| near
the point (Xj,sﬁ) (see [9] about the Weierstrass polynomials). We use this fact
»upecially in subsection 8.2 to construct the Kreiss symmetrizer for such a
matrix Mj(s). We shall need also in subsection 7.1 the following
Lenma 2.4, Let QO be a bounded open ¢ -’ dumain and denote Ly T ‘le posi-
tive oriented boundary of QO. Let @(A) = (@(1>(x),w<2)(x),...,w(”)(x))' be a
vertor function analytic in a domain @ o QO’ and L(A) = Alk + AO a linear regu-
iy A-matrix such that o(L) N (Q\QO) =¢ . Let the integral
P =
} I, l(X)w(X)dX = 0. Then the function L l(x)m(x) is analytic in Q.
Jl'
"voof. Using the representation (2.18) we can express
-] (AT.—MF)—I 0 -1
LAY T@(r) = X T “@(A) .
0 (M —T)—l.
) ’
Cr ()Mm - ]>— is avalylic in ™ and Yoand T oaye invertitle, Lhe lepmn may e
woreed Lo Lhe enre LI = v - Ly wheTe ”l" iv w Jordan matrix.




cresver, itols enocugh to convider the case when Mo i o Jordan cell wotn oo

e . Leo )
renvalue Aﬂ € LO. Denote

(- ™M) = v = P o0, Gy
Then ) -
len W(k)(\\ . (w(k)“) . w(}wl)(“)()\_)\ )1 k= L. .nel,
00 = w(“)(x)(x-xo)‘l,
Since i
0 = § M o = 2vie Moy
.

it follows that w(n)(k)(k—ko)-l is analytic in Q. Then the analyticity of

w(kf(A) is proved by induction on k from k = n to kK = I.

Let ©_.,2,I be defined as in the above lemma, but L(A) be a linear singu-

O,
lar A-matrix of order one. Let L(A) be factorized in Q as L{(A) = Ll(A)LQ(A)

where LL(A) and L?(A) are A-matrices in £, and L,{(A) invertible in

2. and, therefore, regular. Denote by A ,A

o A, all the different eipen-

12722y

values of LQ(A) n QO of multiplicities ql’qE""’qt' Assume Lhat the elgenvec—

tors of LQ(A) corresponding to any AOEO(LQ) are regular eigenvectors of L(A)

corresponding to the same A Then a root function @A) of L.(A) of multiplici-

2
is also a regular root function of L{A)

0
Ly qO corresponding to an eigenvalue AO

of multiplicity at least Q- It follows that a canonical spectral palir

{X. ,J_. ) of L.(X) is also a spectral pair of L(A), and X Lo regular
2,2 2 2

Jordan sequence of L(A). Lemma 2.2 implies that the vectors of X52 are inde-
0

pendent of the singultar eigenspace V., of L(A). Define a linear operator

0
0o Q) - c” by

(2.021)
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lLemma °.5. The space ImQ is a regular invariant space of L(A) of dimen:ion

q = ql+q9+...4qt and the above sequence X form its basis.

&
Proot'. Using equivalence (2.1) for LQ(A) in 0 we get L;l(A) = R(AID ™A ay
where D(X) = diag(dl(k),do(k),...,dn(A)), and di(k), i=1,...,n, have a tcrm

given in (2.2). Replace the operator Q by e, = Q-S—l. Since S—'1 is an isomorpi-

(smoen Q(HJ), the space lmey coincides with ImQ. For any Aj, J=1,...,t,

define vector functions wﬁﬁ)(k) = Di(A—Aj)‘k-l for k = O,l,...,qij_l, where D
<! k -
R.{(A)
, . . k), 2 1 & _ (k)
trw =" column of D, Then Qlwlj (x) = o a A=x o wi (AJ)
dA J
), 497
and the vectors {wi (Aj)}kzo form a Jordan chain of L?(A) corresponding tw

a root function wi(A) = Ri(A) (here RI(X) is the i-th column of R(A)). The above
charns form for all 1 ¢ J ¢t and 1 £ 1 ¢ n the canonical Jordan .equence

of I, (A). Thus we have proved that XQ belongs to ImQ. On the other hand,

0

“any ccalar function w(A) analytic in @ may be written: w(A)/dl(\) =

(?)( (l)( (&)

A) Is analytic and ¢

linear combination of the tunctions (A—Aj)‘k_l, L gy ty, O & g -1,

S e A)/d (A) where (Ad/d )

Therefore the space Lle is spanned by the vectors of XQ , and being independenr
0
these vectors form a basis of ImQ. The number of the vectour: in XQ toowhviiouw iy
0

g = qL+q”+"'+qt' The space ImQ has a basis, which form a regular Jordan .-
(a8

quence of the A-matrix L(A), and therefore it is a regular invariant opace of
tii. matrix. The lomma 135 proved.

Remark 2.5.  The abouve lemma may be also upplied to a regular matrix I(Aa). Then

there are obviously no restrictions on the right divisor L (A) of L{a).
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3. The casce of bounded elgoenvidues

Consider the problem (1.1) in a neighbourhood H(LL) detonea Lnoa. L,
where gé = (mé,sé) and Resé 2 0. Since the A-matrix L{A,Z) = L1+AA+ 1l w
: homogeneous of order one, by introducing A' = A/|Q\ one obtaing
|
f
| (3.1) L{x,z) = [¢[L(A",2") .

We consider L{A',z') as a A'-matrix depending on parameter r' € |

In the first part of this section we investigat in general the charuc-
teristic equation {1.€) and the singular A'-matrix L{A',g') for &' = 0.

In the second part theorem 1 is proved in the neighbourhood Q(cé; Wit 1
:6 # 0.

In the third part the results of Section 2 are used to analyze tne blovk
trusture of L{a',c') for c'€Q(Lé) when 36 = 0 and Lo piove tieorom .0 -
cerning the assumption 1.2. Then theorem 1 in Q(cé) follows quite eaniliy.

i.i. Preliminary analysis of L{A',z').

Consider the characteristic equation

n-1 ] ]
(3.2) [L(at, )= ] a (g )1 =0
J=0
Since |L(A',c')| = (0 for s' = 0, the character istic polynomial may be writltoi .
(3.3) |L(A',g) | = s, At iw,s )
Jliere !
Y p A iw ,s') = |A A (A')n*l + terms of lower order in A'.
0 1 11

.1 e the highest term in pO(A',c') does not vanish, the A'-matrix L(A',;'}
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where

4rd the matricec MJ(E') are analytic in Q\Qﬁ).

a JJordan matrix wth the elgenvaluc «%.

nvertible

MoAet) =

in QY. 7

dia,rwl(r.'),M?\g‘) Mo(e')),

AR M et =0

1t

mhe matrix X(6') and hence

A  Res! » 0, there are no eigenvalues k;
) o) I3

't may be assumed that MJ(C

0

J

et

with Re A% =

d
ot a4 cencider Lne more d°f7icult case of Ferl=0, Let Rea!=C. Then there
3 '
v e enventor of AT,y eorresyponding to «j. Therefore Mj(gé) 18

.

roose dordan cell of order . Yor convenience we replace . by g. The per-
. Poravrix Moo may bte written inoa form
e [ = \l + + I
. ) .
L . i

| A -1 1

j | | |

! t ' P ! A

i ‘l = !

— . A , 3 .t -

= [ il = .'

i i

| | -

E . i !

i N r
i : L ‘
L} —
i S c w
’ . ' : : myaex ot
L] i .. !‘
sor * bt AR R A vy i R 1

-
0




(3.10

The characteristic equation

(at/ie

~

CiLut s ,”'i—:‘/'{)(‘,\'//l,u'),J'...'KE‘ Si-otla

- 33 -

]

{3.2) near the point A',s)!
1 %0

+ A(M 1)+ Bt o=

< .

winere Y, ot oo, 0! e tie 45t inet elgenvalues of the matrix A(A'/1)+F
rA'/i and o', Fer one of them, say Si, we have
-3 s E st Ty Meretore equation (3.10) near the voint (A',r!) L
o '
M - it M
AR A,f"\ = ' ".\',/l wtYy =
Supetten o is oreal fororeal A'/1oand w'. Expending Tio ' I,0') n s
@0
s oAl = S Toont) \x'/;—&f/;,A WE note that o ConlbLex
k;‘f\' t J
4">W:mfk(fj') =0, x=1,2,... J’lf(.)KC'> = Imis'y -Liir\)\"/l,w' ) o= =R
characteristic equation for M](c')
, ' NS v, ,vvw‘i ) v/ v 1=l [
13) |(A -M. (¢ )/:| = (A'/i=-Al/i1) Tee Lot Yot y=at/i) - eamo n
J J aq-1 B i)

rollows that e (')

0

caquivalent in some neighbourhood of the point

>

[& N
4 '
>

...,91_1(

~orresponding to the function SOa'/i,0t) . Cince the coelticients

Jolgenn

are real for
irthy B o= 0,1, ,q=-1. The estimate

'} (see for example the pencral lemma 8 9 in Tart

Ime, (5') 2 §|Res'] follows thuen

).

LY 05 ey WAL gt U 0l W 5

(A!\,r./'}) 1o enuation U3,

} are the coefficients of Weieratrass

imapinary o', the same property heve the coeilie

may te wr.ttern oo

1l
ot
o
» ol
i

e
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wWere the eigenvalues '

Let us consider the

Q

IS

N.

3
o

bl
LA

4+

proolem (1.1

the differential operator

BRI and
oo [B.]

“ot ur introduce a

wiere v oand G oare

wovarlanles voan

e
A
~

1
'A’ E‘

o1 dx

0

transformation

o i

replace

Ceacumes

‘
/
\

(

.
Lh
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RB)

e
<
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1.oounot
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Since the matrices X “(¢') and T'{(g') are pounded .n Q.0'), & tinate o 1,

in variables v and O become:

0 2 (
(3.19) Resivix T + v o))"« K\}ﬁ

[AulCi] =

Trom (3.18){B,) follows that

I

v (x)

Therefcre 1t 13 enouds TC prove ect.umate

Toad LD rerlerence 2L 0r W
' = oy » 1 ~
= and Do feoa Js

uGopart.taioned

D oand matrices

represented ac VF = VL,V

v irTies the inequalitie:

I

o chould requare that

wae of Re AL ® O Lut
o
poaneed Ly number s Wik

N fu,kh"\.’, )?-‘I.r,k(, .

Mo
IS

1o

+ (V;(O)!é <

(3.19) tor

|

a

eixd TN

Keo. /

Ve "',A"’Vn
) 1 W€
N — Gl
fre- "
V.o s.€.
r

tur probiem (3.1,

Y
1 .
for He !
5. ;

Ll o emenin:

sutfisientiy

Lo - “ ot .b:,,*...,f,,m.‘w%,w

Y R X Ly sl
vt o M ¢ . -
‘ { L
0. -1 f
1 5 3
N s N .
b
= )0on tio i N e '
t v
B AT o Lo
) Sefreas e
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SU e e tond g FE R
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VIR v.. 2 [V |2 - CIVII?

PR 11

Arplying to equation (3.i8)(A) a yeneralized enerpy method as in [2] one der.ie.

an estimate

‘ o ) o R o K . ‘2
(3.22) 5-Re5nvF(x)w‘ + VII\U)I -c v}(O)l $ gor Fapix)i

emma 3.3. The conditions (UKC) and (UKC,) in the neighbourhocd Q(gb} are equi-
valent to the condition

det € X, (g)) # 0

Proof. We complete the definition of the matrices UJ(L') for ali 3 =1,...,%

by setting Uj(c') = 1 when Re Aj # 0. Then
Uig') = diaetU ('), (et , . 0,0 (g ))

i contlnuous at the pcint gé with U(Lé) = . Let us introduce a new variatie

yp = U_lvF with part:tion yF = (yI,yI[)' as for tne vector Vi Consider thre

equations (3.18) (A), {B) with G = 0. Bguation (3.18) (A) in the new var.arle

tecomes

d N N,

I . (11 12>" -

dx I

\O N22
where Nll is of order (#-1) ¢ (&=1) with eigenvalues A" gt v, [e o
and N?? has eigenvalues with Re A' > (0. The solutiorn of *ue jnoc +unt
L+
LUR) s
yli:() ‘)/I(X):(X} |(l‘i I ]

Then the general colution of the homopenecu. equnt . o oo ral 0w

S SRR LI, 3o, s i i JHPUTRT—
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(3.23) @x58) = (0 (x,8),0,(x,8) 5. ..,0, | (x,0))y (0) = Kpleyu(e ')y, (x),0)

so that
(0),0)" .

The vectors ¢E(O,C),---,® (0,r) depend obviously on ¢' and are continuous func-

-1
tions at the point gé with the value

(wJV(O,cb),--.,w (O,né)) =¥ (¢')

-1

The columns of XT(Cé) are independent. In Section 1 we have defined alsc the con-

dition (UKC) related to the "shortened" vectors Q%(O,cé) which correspond to the

), X (z')) are inde-

/'_’ '.S. X = ¢ 1 i 3 ’.('
matrix XI(CO) ince X (¢') 0 and the coliumns of (X, (2] o8}

[
oo(’(')

pendent, also the columns of ?T(cb) are independent. Therefore {(UKC) and (UK(C),
are, as was stated in Section 1, equivalent in Q(cé). According to (UKC),

det & (QE(O,Q'),...,wR{SO,Qb)) # 0 so that det S X](Lé) # 0. Thus, the lemma

0
is proved.

Consider the boundary condition (3.18) (C)

(0) = levL(O) + DXIIVIJ

Then under (UK(C) we have an estimate

i)

(Q)‘( sK(|v“kO)|p+ ‘7’).

IVI £
Choosing the constant ¢ in (3.22) small enough {comparced with ¥ one cnrtain,
once the estimate (3.20).

To accomplish the proof of theorem 1 we should chow Lhe nececspey v 0

et det O XI(Cé) = 0 and a vector yI(U) satiafires




"———""""""""l"llIllllI----............._____________.EE.
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S Xlﬁcé)yI(O) = 0.

Defining a solution @(x,z) of the homogeneous equation (1.4) by (3.23) and
using the above yI(O) one obtains

gle') = S9(0,0")
so that g(¢') is continuous function of ' at the point ' = ! with

0

1

r(cé) e XI(Cé)yl(O’ =0 .

From estimate (1.2) one arrives at

lapio, ')l? < lf—i(f,')lg

Y

[0}

so that Ap{0,z') = 0. But Ap(0,c))

, ' o o Slumne oF
o A XTRLO)y](O), and since the columns o

A XI(LA) are indegrendent, it follows that y,(0) = 0.

Therefore det S XI(Cé) # 0, and (UKC) is satisfied in a sufficiently small

neighbhourhood Q(Cb).

3.3. The neighbourhood Q(Cé) with sé = 0.

We begin with some kind of perturbation theory for the AN-matrix Taat,ot)

considered as a deformation of the singular A'-matrix AX'+iB(w').

1

with multiplicities Ay spoe ey A shown in statement 3.1, exactly
s

(n-1)/2 roots (counted with the multiplicities) belons to the halt vlane

Let k',x',...,lé be all the different roots of the equat.on pO(A‘,C&) = 0

Re A' < 0 and the remaining (n-1)/? roots have Re A' > 0. We add to the whod e

.
1

set of roots the value A; = @ with multiplicity q_ =

[~

T . e PITE:  SPRDY VETPUEN N




The contours Fj s J T lyea,ty I

the neighbourhood Q(cé) is then chooen

L'EQ(Q(')) there are no rocts of the erguut
For r,'€§z(r,(')) with s' # 0 we define the

P ("), 3 = 1,2,...,t, and b (g') as in

J

defined for s' = 0. In this subsection
necessarily 1.2) is satisfied. Then the

Lemma 3.4. For any j = 1,7,...,t there
_'(]_(w',s') analytic in Q((,A,‘)), whicn fulfi
3 A

a) for s' # 0 the columns ¢ X (', ")
b) for s' =0 these colus:. (.1 ..~ to th
s point f,(') they form a4 . reular Jordan
() il
N ' ' AL 1
L
0 (/\Yj’wh)’(‘pm R

where Lpo(')\',w') is defined o in lemns

c) there is a qjqu matrix-valued funct

) is a Jordan cell with the «icenva

(3.72L) A X](()')MJ((,‘) AN S AW

Iroof: Denote by (') some circular o

e et creed s T sube ety o sLl and

Sl b enowth, U0 that ror any

ion ;. {a',z') = 0 on the above contiur:

mutually orthogonal projectors

{3.0). Now these projectcry are no

we suppose that assumption 1.i (but not
following result takes place.

exlsts an nxa, matrix valued funziion

[z

o the following conditions:

e cingular cooenopeee Vol ond an

Crigr

L=
1 T T
\'( AR a(D, P s
<. 1y
ron Moot annyt e o ! IR
1
tue At ound
g
. X ) .
Jinotnt) e fur any s €T
cichbonriocd Gf the poonr st e oLy

the contour I', and by A QLAl}) twhe cpiee o8 vect oy T
e .
N (o Pyl
@A) = L@ AT e T AT e : - : Lo o
e
introduce an operator o (0@ - T
J , r
, =1 -,
(4.00) wotrt g = Loma b AT P
A Iy
— sl = SR g

{
!
1




According to (2.1L) [mQJ((,') = Iij(t,‘) for

X

L‘Eﬂ(cb) with o'

POKAj,wé,U) 0, the characteristic polynomial [L(A%,mé,s')]
J .

(') and the constant matrix AAB + jB(wé) has an eirenva'lue

tiplicity p > «. The matrix AA" + iB(w') has

wo(x',w'), corresponding to the eigenvalue 3' = 0. There 15

-

= 0.

3

SOome

0 of

dince

divisivlie by

ml-

some

only one ¢ o rnvector, name.;

nxn matrlx

D{A',w') analytic and invertible Tor A'EQ(AS) and {(iw',0}€5050), wnicn prov.de:

the similarity transaformat . on

N (At,w') 0
-1 t LY L [ Y| ' ~ / 0
D (A, w' ) (AAT+HIBlw' DA yw') = \
o N
where
o Lo0o. . 0 '
' f \U i .. Vb !
R ”mk) s L= ]: |
|- |
i [
leu €, v Ap—a!

Oglye.eyp=L, are analyiic funct.

'

o= e {(Aw'), k =
k K 2 3
SRR RTAR and the matrox N (AY,J&} R B S A
!
it tollows that O(.J(A',m') Cro Heri e, wee Ty cnoooume That e
“he matrix DOAT L") in equal to wU{A',w'). Mult iy iy .ne the om
nothe left consecutively by the jnvertibio matrice.
)
-0 - e .« .o =t , 1
| ‘ =
\ X
1 0oL ,
e .;‘»l: 0 ! .. . ,5,:":7f‘hu'..',‘,
. R . o
) i p
Poo= ol
4

ST YRS D B

! will:
B l N

AR HR ! !
i X T(')'\',uv'w !

2

5 .

-

[t




one arrives at

] p 3 1
E3E2E1(No+s 1) dlag(el,l,...,l) + 0(s') .

Comparing the determinants |L(A',z')| = s'po(x',;') and

IN +s'T| = s'(te te s't...te (s)°71) we obtain that the equation
0 1772 o-1
P‘(A',Cé) =0 is equivalent in Q(Xj) to the equation el(A',wé) = 0. Therefore

q

e (A',u)) = (A'—Aj) Jfl(x') with £(3) # 2. Introducing finally

t

1
E, = diag(1/f,(x'),1,...,1) we denote
L 1

1

(3.28) N'(A',z') = EhE E.F (NO+S'I) = diag(e

3EEy (A',m')/fl(A'),l,...,]}+V(S"

'
0 1

The matrix (K'(X',z') " is analytic at the points A'€l., '€Q(r') and
0 j 0

1,

] —4.

(Né(x',gé)"* = diag((%'—k%) S B B

Let us replace the operator in (3.25) by a new one, which is denoted again by

QJ.(C’):

(3.29) Q. (g ) = (2ri)7t § D(k',w‘)[(Né(A',c'))_]@on Jo(at)dar .,
T

{(z') in (3.29) is analytic in Q(z'). Since the matrices

The operator Q 0

J

EK(A',g'), k = 1,2,3,4, are invertible for A'€Q(A!), «' # 0, the =pacer
1

') and ImPJ(g') still coincide for s' # 0. The matrix

3

L
[

o

'(X',c')_lwon-p] multiplied on the left by L{A',0') bhecome:s nnmlye o

in Q(Aj)xn(gé). Therefore we have




P30 L(x'],c')u,.]u,')w = CAL I et

\

et W detfine vector functions

qj—k—l .
wk(x') = ((x'-x'i) 50,0, 00,0 € O(RUAN Y e e = -
and a matrix
“y()\')=(w:\,()\'),w(K'\, ,u:‘l_\A'\\
Then the matrix Xj(k',g') is determined .
Xj(r') = wl(f'ﬁ
condition a) of the lemma is obviously fulfilled.
For 3' =0
] (L =K=1
iy Y = (owi)T £ @ (atyw'iaroaty e Tt ettt € '
X Jr* 0~ i |
i
e
a}'(p ! ! i
B . - —h= .
\ :Wk“'j = (Pni) jg (p‘\’x',w'\\,(,&'-x}' ir! o - S
I, ' bt R
o .
(r)
=@ (At
U J
Joocondition b) is satisfied taoo.
Formula (3,30) implien
!
[ A T N R T R A b S
S k B v - 'y
il
[.()'T’f')wi(f,')‘b, —fy it oAt LY ) M
1)
el L 4
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A‘—A", . r‘| .v,,v = v Al, 1 + , . ' v [ v‘ ' .
wreeree AT r N Ayt i et Lo PSS O ' R .
oyt i dn wntY and vanich o at cthe pcint oL D e ety ntiat e T
v -
oLl onge oA sinpularity (WUt | . . IR
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N
; / _ Ry
Ot n )y AR T Jov ot v
eyt gt ’ '
o g . P {
-
]
M (-0) = a4y '
J ; P~ l
S i
@ . . )
voocenaln (3.00)0 The lemma 1o jroved,
Kemark: [t may te shown that the above defirned vootors ’{'\'p’ k=g, —
Jpan the space ImQj(L') aloo for o' 2 L;. sroct ot e dimenc o ot
; :
m ('Y = ImP (') i , and theretfore the colume of the matriy ¥ ') ©on
: .

Y

. J

Lasis of ImP.(').

Iefine matrices

(r*)

The matrix XF




o
.
e

2 ol Wt et S~ RSP <







~—

£, We prove first that dimvn(mé) = q 3 (n+l)/2. Indeed, if 4y < {n+l)/?

/e , . N N ~ Y N
columns of \'T\Cé}, kw(cb))are not independent. Let v(0) = (VI(Q),vw(u))'uc a
v—reere vecotor such that <X1(C5)’ kagé))vﬁﬁ) = 0. Then VT(O) # 0 and
w(x,s') = X (w',s"Jexp(x M, (w! ,a'))v (U)/s!
[0 ] 1
. o S +,
1=t rovial nomogeneous solution of eguaticon (1.0 VAL In L0<R ).
:
rorat
Sal et) = oy ' s -« ) /
Sul0,s") = 0X (w!,s'iv (0, " = .\X,/Jm,,'),'m(w%,é'))v(O)/r‘
e Kd(c') € ¥er A and TF 7'y = i, Trerefore OulO,0'! s tounded as ' o (.
o
tie other hand, there (& come x > o sach trat the functlon wl(x,c') = s'ulx,s')
nen zero for o' = 0, Indeed, 7 o ix,0) . tnern
i, - v, o t k
any complex oo Tre Space cpanreed by ocuslotne vestors vl wexg ”,‘i$?7v ;
Lo invariart cpace of e patrox M0t Nt AL I TLe Nenerers yector
. - N - - o A > ! - . . - : - + -
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{ Soroall orteR(n ). Detire a scalur function
‘ \ R , ) . 1
R I R AR AT SO R VA RO RRS A E AN DA LR S E
g O F 0 J G
Tie o tunetion @ 0r')l v apalytic in the half plane Re A' ¢ 0 and tends to zerc
N L . ) . -1 I .
ST wihen A' o+ w, Myitiplying the matrix L “(A',z') ty @%CA') and 1
‘rtesratings alore the imavinary axis A' we have from (3.32)
: {x'—wz L'0g-1 1
Gty \ ) @ LA)ArT T (e ) TRagy lo, (A" hn |
JEe At=0 ¢ 1 ' Re A'=0 ~
;
K
<
Res'! 1
\ asy Lo 2how Lhat *
1
R
r A o ! N = 1
? < ’ > ‘D‘\/x.’i\,i ':»i;!n"\/\»,‘g,'--,(Di(r'{,,'\':'?’,“,' ’*"sy'l
;'; A t= : - - ’ 4
Ve e, (0 T )y L
S R

‘he elrenvalue A' 15 not a root of @.(A') for any L'ER(;S), e metrix
kS

@ M st )Y is invertible, Tt follows tfrom independence of the coiumns of X0}

I,

€

-1
1

LA

. K -1
(z' )l < Tﬁl and IITj (¢')

wetrix o T,7(g') has a singularity of the type |T(C') # 0
It ]
~ ' # 0 oand ‘T((')! S0 for s =0, tie sfmpularity I7(n0 - N R T
=k . ; . . o1 .
! oDt e openl ol othe matrix function 7L (') ic bounded. The onalvc ooty 3 i
—_ o
. [

[ - -~ o - el M H H N H » 3 o
. follows row without difficultier, In the same way we brove Lhe anaiyt oLy

-




ST prove U Laon oventente of the lemma,
- -4
eocvace Gm T Tt ceineder with Ker T{¢'). Indeed, T(r')T Ciz') = G
0 0 0
o reo e T @ Fer TEet Conversely, if q\C&)V = L othen Tlw',u')v =
: 7
' [ e e T i é'l( ' | T G S,
: b, whiere Vrer 1 Wosjub ) =y
0
olory cantlnnlug > Ker T C(')-
J
. S . N [ . p 13 . . .
Foeoany o Al epens rrom M0 000000 ke matrix o' 4 Is invertivle.
T for cuen o' ldentivy 3Lh) impiles that
\ .
At () "
9
Fer T{rl)= ¥er LT rtiv(nt) )
J L = -
- \
/R' EN
RNTER A Yooand o= \ S We DAL e crents of the
et oy and vt e parsinicred » of ot manrix
. . = \, o v o= s YR e
o S e R R R T N N sl ol
L R 3 e ey e vy - . - L~ T = 0 . —
ool i nioek dlapenal, u, o= At 0l Cootar o= 0, L, ol o = v
Comeer, ool the o Vot o Yoozohozor. Uroany o=
ol Dix otome 1, 1o ) st oor Jo= o wy and adjonn o JRTIAN TR
il 4=, folumns of the matrix Xigl) o Yorm oo b I ! vwe add
L 1 Uy
K y
Jordan chains). Dencte such ootained tacic vy v f LOThaors oy oany At the
oot @A T may to exprecoed as a L.nesr combintalon
;
t LI T v ! 1
WA W) = rjf\:_)w A,
.
wiooee w{AT) noa g -dimensional column-vector. kor ddrferent AU e
0

p Aty span the cpace Vo (w!'! and the corresponding Lo them veetcoopes w(at
| ot
Cpan she o qo=dimencional cpace ¢ . Therefore we may as:une st Uoronome !
voe component of the veoctor w(A'), whieh corresponds to the Dot slamn or
ot non zerc. We may aloo acsoume that A in A ' .




e

“xtending w(A') to a n-dimensional vector u = (ul,ug,...,ut,uw) vy adding zero

omponents in the suitable places we obtain
' 1 = '
QO(A ’LO) X(go)u

wra the last eomponent of uj is non-zero. Then the vector

T v o= LA, el) K(g)u = LA, g e (Ao ) = 0.
0’% 0

£y is a Jordan cell, the last component of Vj i5 proportion-—

.y e

T lant component of u. with the coefficient A'—X3 # 0. Therefore the
conpornent I v, 15 different from zero, and the lemma 15 yroved.
dJ
crooour next consliderations we continue to prove simultaneonsly theorems 3.5
-1

smro.. Ltous tarn to problem 1.1. By substitution u = X(o')e, v =T T {g')F tihis

cmo Lo brouwsht to the form (3.18). The eigenvalues of the matrix M,(cé) be-
s oo tie nalf plane Re A' < O and those of MIL(Qé) - to the half plane

Mo A - UL We may even accume that
ke MT(c‘) z =8I and Re M,l(c‘) 3 60 for r'euir!

et ninet bhe symmetrizer R{g') = lil(c‘ ) ® R (') with R (g') = -1, K., (o' =1

11
crot oo ving to equation (3.18) (A) the peneralized energy method, .ne obtains

R PR

Lmat e

KIGLCOT L ;
. o , [ PR
_LIVJ(U)| < [Ll : =~

;)
i) 6‘E|HVF(X>"‘ + |VII

]
P SR e W M
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The initial values VI(O) and VII(O) are given by

A 1
(3.34) o) = iy JO exp(-4, (£ )T (e F(x/ c] ax
and
(3.39) 5 X (g vy (0) + 8 X (g7 )v,(0) = ¢

. . . + N .
Conslillder a linear operator Q acting on the space L (R') of n-dimencional

, 2
in ¢kn_l)/2

vesvor-functions ¥(x) with the values and given by

4+
. ~2]
T 0F = _M v St Yo
(3.3 F Jo exp( Tli(co)x)qll(co)}(x)dx
o . s (Yz—l)/:‘
lLemma 3.7. The imafe of the operator  1s the whole space ¢ .

+
Proof: The operator ( may be expanded on the space D(R') of generalized vectLor
+
functions dual to the space of exponentially decreasing on R veector funetions,
oty ) +, . . RPN .
> DIR ) is the closure of L,(R ) in the weak topology of D(R ) ani  Ir n © r-
ot - _ . .
tinuous operator on D(R ) with a finite dimensional range, it folilows that
+ + . . .
Q(LQ(R Y)Y = Q(D(R )). Taking F{x) = F(xo)-é(x—xo), where §(x-x,) s the delts
I + N
function, we obtain that Q(D(R )) is spanned by all vectors v of the rorm

I

+

1
N _ ' 7 T 'y, e () 3 Loothe minime
v = axp( MII(CO)X)(IT’ where G €TmT 1{gg). Therefore G(D(R ) th nimel

-1
TI(Cé) containing the space Im Tri(na). We au-

sume the vector . to be partitioned according to MTT(Cé)' Tt follows from
o

iemma 3.6 that for any 1 s J € t with Re A3 > 0 there is a vector JITETm T:i(t“

\

invariant space of the matrix M

with non-zero last component of the pertial vector Gj' The matriy

MTT(Cé) is in a Jordan form with the Jordan cells MJ(C5)‘ It may be onsily shown
that the minimal invariant upace of MTI(Cé)’ which include: he alove vector ”L]’
will also include the all space of eipenvectors and reneralized clgenvectors of
MTT(CA) corresponding Lo the eigenvalue Aj. Taking cuch veetors 3}( o oany J
with Re k% > O one proves that the space Q(D(R+)) containg all the veetar:s of

m(n—l)/P

T 4 S e Rt et W ML . .
. ,,Afﬁw“,h
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Analogously to lemma 3.3 we have
Lemma 3.8. Let the dimension of the space Vo(w') be q, 2 (n+l)/2. Then the coun-
ditions (UKC) and (UKC) are eguivalent in a sufficiently small neighbourhood

Q(z') to the condition

z!

¢
a '

det S XI(CO) ?é 0.

Proof: The general solution @(x,z) of the homogeneous equation (1.4) for

c'en(cé) is given by

©(x,8) = (@ (x,0),0,(x,0) 50050, (x,8))v (0) = X (z)exp([g]M (" )x)v, (0)
so that

(0,g)) = X (¢') .

(o (O,c),w2<o,c),...,mi_l :

1

The columns of XI(c') are analytic and independent vector functions for c'EQ(c&).

1

7
0
SpXm(c’) = Ker A, also the columns of the matrix A XI(cé) are independent.,

Moreover, since the columns of the matrix (Xl(ﬁé), X (¢')) are independent and

The last is equivalent to the independence of the columns of the "shorteneg"

matrix X.(c!). Now the claim of the lemma is obvious.

1
1450

Lemma 3.9. Let dim Vo(m') = 4y 2 {(n+1)/2. Consider the problem (1.1} with =«
boundary operator &, which is a constant Eiixn matrix with o (Ker A) = 0.

If problem (1.1) is properly posed for w' = mé in the sense of theorem 3.5, then
det 5 K (gh) # 0, i.e. the condition (IKC) is fulfilled.

Proof: 1f O XI(cé)vl(U) = O for some vector VT(O) # 0, then

ulx,rn') = XI(C')vxy(ILIMT(c'))VT(U>

‘oA homopeneousn solution of equation (1.1) (A) and

Soulaynt) = ('),

L - [y TR S, e ki anisdic TR ] 2 il I“*‘- . - ‘ u




where g{z') is an analytic vector tuncrion of ' with ,'(r,(',) =, Tl e

columns of the matrix A XI(LG) are indaependent

Aulo,rl) = A 2 (gl )v (0) # 0.

eglvy

We get a contradiction with estimate (1.1), which impllec tiat
[Au(o,0')| ¢ Kle(o")]

for any ' = (wé,s') with Res' > 0,
Now we are able to complete the proot of theorem 3.%.
Let us return to formula (3.34). For a fixed [cl we connider vl,tﬂ\ un

function of 7' and define

~ +u‘ -
. 0,z') = 5 = 2yl =M Pkl et na ‘.
(3.37) vy(0szt) v, (0) fo exp(=Mo (ot gt oont R
° +
The function v (0,z') for a given i € szR Vois analytic in il According
1l K .
to lemma 3.7, fo. o suitable F one can obtain any value of v o0 er

Let g in (3.35) be zero. According to lemmu 3.0 the matrix o X (o'

invertible and VI(O,C'> = 5 VI(U> iz alse analytic In Q(2'). Fotimuete (G000
implies that

8

cEIFGO N

Reo
Since
Au(0) = (i/o)-alx (ot iv (0,00 ) + X (et )y foget
we obtain
(v (rt . t y irt {4 YYo= o and ¥ ' AL P A
AL, CH)VT(O’CH) + XII‘[H)'lZ\)’aT)' TN ”[1(L”) v L € Lol

Lo, - L o 4 e R ek et A B L
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Bt , . an=1)/2 :
But VIT(O,CO) may be any vector in ¢ and therefore
Sp X lef))esp (X (epdy X (el)) and Spxiol) = opii (ot v i),

According to corollary 2.1 the n column-vectors of the matrix X(cé) span the

space Vo(wé). Hence VO(wé) = ?p(K[(cé),Xm(cé)) and  dim vﬂgmh) = (p+)) /0,

Theorem 3.9% is thus proved.

Let A and B(mé) be symmetiric matrices. By setting the toundary operan r

in (1.1) (B) as S u(0) = u; one obtains for w' = wé
(see, for example, [1] p. 636). Therefore theurem 3

a properly posed problen
Joimplien, indeed, that s
matrices A and Bj’ J = 1,0, e,m o saticofy ancump tion L0,

Now let assumption 1.2 be fulfilled. The necencity of thne condition (E)
theorem 1 is already proved in lemma 3.9. To accomplich the jroot of onff:o eney
of this condition we turn back to eotinate " +.33), Dince the rmeteix 0o 0!

invertible in Q(¢'), it follows from (2.2%) that

1
&0

“((,}&“‘+ -

Thoosing the positive constant o in (3.33) rmall eroagh leormpnre i oot e o

K) one obtains

[ v HJ'){‘/‘ , ‘ ,
2 Vo N f x )l N
l S T —————
e HE )
Mpuation (3.18) (B) implies tnat
‘ e
Ve lxit : o
|
Since ful = |x(e")v| < Klv], it Jaae o] = Jan Cotv ] vl TR

(3,38 Tl L"‘”%'{‘fl : st(“"‘v"—"}- ’ #ﬁ) L
' |:iv . ’

. . ey e oy S T e el




(3.39) Reslulx) 1’ < 'r'<\,r\” + M)

(3.40) lau(0)]” ¢ V(

TI
ixed, and denote VII(X,C') =8 Vrlﬁx). The vector tunction

the equation
! - "

(3.41) <E’ iCIM”(C'J) '«”(x,r,') =

1

Conl) ‘Ll”vlrkx,t')”‘ + [vjz",ﬂ'f{l s K

4ith respect to s' one obtaln. in o trae e wn

avTI(O!C') J
i
(3.00h3) S ‘ o Ela]arox + Xttt < E
G
Donote
vT(O,g‘) = oy o,y ot ' R '

T yeetors VI(”’C') an v,T5~,1‘ R % AR

L,nd) oo rt S ' + ' !

nee O XI(C') fnodnvertitoe, v ! o ) '

L 4
...F‘-‘ S . 3 R alodut:. ot oot e SLD

To prove the required estimate (l..) it s enough to b w

We consider the vector v__(x) as n funcvion of ', wiere |r]

and is an analytic function of r'€n(r'). Appiyine to (3.51) the

energy method with the symmetrizer », 0", = | Wwe et an estimate

wiere the constant K ois indepeniert of V€LY ‘il and P fferent catir
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(3.85) vy (0,61 < K(|vpp(0,e)]7 + Is1%1]?) < kCe)urton® + Je]7 e
Differentiating (3.44) with respect to s' and using estimates (3.42) - (3.45) we
‘et - '

Ti.ué) EZlégéf—lwe < K(|ClNF(x)H2 + |z ?lg[?).

~

The vector function u{0,z') is also analytic in Q(cé) and satisfies

2

- e
(3.47) 25(—2:?—-) < K(lg[tr(x) 17 + |¢

~

1]

Note, that for r' >0

(w',0) € 2(g'), u(o,z') € VO(m') and Su(0,r') = Sglvzﬁ =0

The operator S is & monomorphism on the (n~1)/2 dimensional space fy(xT(m',O))

and 5 X_(g') = 0. Since V (o') = Op(X (w',0), X (w',0)), it roliows thaf

Ker A, and therefore Aul{0,w',0) = 0.

e
—
165]
-
<3

(o]
—
[
—

1}

For any ¢' = (w',s")€ Q(Cé) we have

~ ~

Au(0) = Awl0,z") /s = AlulOyr j-ui e 00

Ttere is an estimate

sup ’(U(O,L‘)—U(O,w',h))/u'] < suy
g'EQ(gé) c‘€Q(n&)

Srplying (3.47) we obtain finally

|au(0) % < unpekfelurto o+ e e

el < (1l

Thun, theorem 1 is proved compietely.
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4. The case of unbounded eigenvalues

We consider problem (1.1) only in a neighbourhood Q(cé) Wwith gé = 0. The

case sé # 0 does not differ from the one described in subsection 3.2. The char-

acteristic polynomial

(¢') = s'-fa |-|a

IlL(x',z")| = i a (e = 0 with s -

does not vanish identically for s' = O and any real w # O.

Let an_l(gé) = (Cé) = ...=a (¢g')=0,a Y # 0, where

(7t
an-? n-q 0 n—q—]‘LO

obviously q 2 1. The A'-matrix L(A',cé) has n-q-1 finite eigenvalues and an

infinite eigenvalue A, = = of multiplicitiy q+l. The characteristic poly-

nomial of the A'-matrix L 00)(A',r,') = A'LI1/AY,0Y) is

n .
(h.1) L] = Ta (o))
and at the point r' = ¢

0t

Lo = 0

: ') 4. ow (a7
heqot (50 al

Jince the matrix L(A' g | is regular, there are matrices Y(r') = (X (7' ,x [r')i
’:O F 3 "

and T(z') analytic and invertible in Q(&') and al=o analytic matrice. M in")

0’ T
and Mm(c’) such that (3.8) holds. However, now Mm(h') v oa matrix of orider
q+l 2 2 with eigenvalues near the point A' = 0. Since the space
Ker L(m)(X' =0, ") : Ker A is one dimensional, the matrix Mm(ﬁh) may be
ascumed to be a Jordan cell with the eipenvalue A' = €.

lomma U.1l. The matrix Mm(t'), C'EQﬁ((W) may be reprecented inoa Uorm

AT !“'-f"t“il;.ﬂ R . 2 SRR
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N M(l)
o0
. 0 . 1 . C .
{L.2) M (g') = ‘ with Mi ) (i1,0,...,0) , Mi L=+ o
(2), .,
M (g)
\O
where C and E_(g') are given as in (3.9).
The coefficients ek(c'), k= 0,1,...,9-1, in E_{¢") are real for imayinury
5' and |Im eo(c')l 2 élRes'l.
Proof: The matrix Mm(g'), being a perturbation of the Jordan cell 0, muy
written as
{ 0 A
0 e (o) J
‘l__l
M (z') = iC + iE (g") = iC + i
e~} o
0 e ')
/ t 1
eq\r ) (()\( ) |
The matrix Ew(c') satistfies a demand that on any lower diggonai © e BEEES IR
»ne function Ok(c'), K o= 0,1,...,9 (see (6] for detail). The wosviw | o0
as already mentioned, has for any ' an elgenvalue A' = 0 wi‘i, - 1oy e
eigenvector belonging to Ker A. Therefore el(c') 0 and the treox M !
. o
the form (L.2).
For any C'EQ(C&) and A' in the neighbourhood of A" = i, v i e
izt lc equation
(L) POV T=2 (/i = Ovntar e iz e
=
‘__' ¢, ' ) N L Nt e Ml .
ettt .. .
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e = s
{
i
-t -
] \ ,
v=(vF,v } ,v},=(v: Y Py v Ty T,
v_(‘) = v, v, ,', Vo= Lo 'onnd i
s 2Ly L B e !
' )
v = (v !
- Y.
| and similarly for G.
l‘ Then problem (1.1) in the new variables v and G vecumes
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Adding (L.8) and (L.9) we obvtain finally

G I

nes

, 2 o 0
(4.10) §-Resivi™ + [v, ()" - clv (0)] ¢

T
Unlike the situation in lemma 3.3 the conditions (UKC) and (UKC) are now,
generally speaking, not equivalent. However, one can prove the following
Lemma 4.2. (UKC) is equivalent in Q(gé) to the condition det © X_(gl) # .

‘14%s

Proof: There is a matrix UF(C') (c'EQO(Q'), Res'>0) continuous a* the poin®

0
cB with UF(Cé) =T ryrovidine a cimilarity transformation
N (') W (z")
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where the eigenvalues A' of Nll V((') nave Re X' < 0 and those of N, Lt
LN APy
_ ) A (2)
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e N (') X gt j
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and the matrices Ui ) and Nij » have the same features as the matrices P and
b
T . LR T - I . 17(2)) and 17 = 3 [EE o Introdreo
k‘i respectively. Defining U, = dldg(i,vm and U = dlug\wy,nm, we introduce
o1,
-1

4 new variable y = U “(z')v. The vec or y is partitioned in the same way ars i
sector v, Equations (L.6) (A), (B), (C) with 6 = 0 are transformed to the
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The solution of (4.11) (A) in L?(R ) is given by
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respectively Re A' < 0 and Re X' > 0, the solution of (4.11) (B) in I,
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in.idering a "shortened" vectors we have
(4.12) olx,z) =(®1(x,c),@?(x,c),---,wl_l(x,c))y1<0) = i(c')v(c'xwz(x/

where O(x,2) is a general solution of the homogenecus equation (1.4),
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isfy the orthonormalization assumption of the definition (UKC). The eauality

S+ (P (0,8))5...50, (0,50)) = 8 X(z})

proves the lemma.
Consider the boundary condition (4.6) (D). Under (UKC) we have an esti-

mate

(h..3) vy (0)1® < k(g (0] + 1215

Choosing the positive constant ¢ in (L.10) small enough we obtain finally

, e B
(h.14) Reslvi” +IVI(0)|8 + ‘le(O,]L < K(%%%— + |l )

. -1 -1 .. .
Tince the norms Hvll = 1X “ul and IGHI = JT *wy are correspondingly ejuivalent

vie norms hub  and  IFE , and  [Au(0)| = [Aaxv(o)| = IA(KTVT(O\ + XFIVTT(m)v!
covimate {1.2) follows immediately from {(L.1k).
define

Let us now show that (UKC) is a necessary condition in theorem 1. We

e homogeneous solutions @, (x [ IR (x,0)  of equation (1.5) 'A! = above.
&l ] 2 b R'—_L 3 l

e Jkél(o,gé),...,wE_I(O,Qé))yI(O) = U and consider a homogsneou

colution

LIS I (Wl(XaC)a@?(X,C),---swg_l(x,ﬁ))yl(u). Since O @LO,z')  dependr oniy

‘1, the vector ©(0,¢') and the last one i¢ a continuous function of o' at the
r

' o= Cé’ it follows that O@(0,2') tend:s to zero ao o' tend:s 1o r ).

2 *he other hand, estimate (1.2) implies that [Aw(o,c‘)[ <

Conce the norm |Aw(0,c‘)l is equivalent to the norm l@(@,n‘)[ , it foliows

cnat @lo,z') = 0 and therefore yT(O) = 0, Thus, theorem 1 ix proved compietely.
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Part I1. Difference Approximation of the lnitia! Boundary Vuiue

Problem

5. Definitions, Assumptions, Statements of hkesults.

5.1. Burstein difference approach. Definitions of stabli.ity.

Consider the initial boundary vaiue problem [(0.2) for the carse 0 tw,

space dimensions. i lem {0.2) is now written as

du du u g
ot ax oy

(o) Sul0,y,t) = gly,t)

The matrices A and B are supposed to satisfy the accumpticns .0 s oo,

S.1) LA} by co-ruied Burctein dirfer-

We approximate the differential equation (

ence scheme. In order to introduce this scneme we deline .n

6 PN
~w-y-or  t20 a grid, which consist. of points (%X ,y ,t [ = (ulix,. v, 0t , where

W ¥ J
Jsb,0 are integers, v : 0, -y =, 0o : 0 and Ax,Ay,5t  ire omesn ocautes nothe
tirections x,y,t respectively. We ausume that At Ax  agd AL 4y e vt

et us denote by EX and Fy the shitt cperators actingeg n e cpooe 0 1he
¢srid functions ulx,y,t;, and given by qu\x,y,t; S UXFAE,Y LN, U XN,
niz,y+Ay,t). Then the Burstein differecnce operator tor the egistin

Wwritten as

\ N i o v B
O tulx,y,t)Eulx,y, el sl 100k Gw v, +: T T
Y s Y s ) [ ( x> v o + P vy - v ] Ay
. 1At b <k o= At Lok : '
where CLE ,E ) = —={— A-{F-ak (B SHE i oo bl o |
x’y LitAx %R ) vy hy X ¥ ] ,

{he operator L includes obviousiy oy powers -0 0 onn L

The boundary operator 0 din 0 L0 hn gy cen ! Toorenen

! perat or
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{5.3) Sulx,y,t) =
0

E .

0

where the sum in the expression r1or S is finite and includes only non-negua-

tive powers of Ex' We denote by Yy the largest power of FY in al! Sd,

g =0,1,...,s. Finally, the entire problem (5.1) is approximated Ly the 1if-
sl s F 19

f‘erence problem

{(A) Lulx,y,t) = At-Fix,y,t}
V9. b (R) ulx,y,0) = fix,y)
(c) Su(0,y,t) = aly,t)

with L and S defined in (5.2) and (5.3].

Fquations (5.4) (A), (B) and () are considered at the grid points x ,y ,°
v ‘e
2t in emuation 5.4) [A) x = vax, t = oift with wvzl, o:l, vo thas the
operator L is defined. We assume that the matrices A and » as we!. as the » oftfio-
ient matrices & are constant.
O,sVsl

in orier to give a definition ot stabiiity for the probiem 15.40 we intr . i e

norms in the corresponding spaces of grid functions. [et v .. X! enste the
space of all grid functions ulx ), x =vAx, v:0 with T luiz TR
V] \t V=L .
define the scalar product (u,v)X = 5 (u(xvﬁ,v(x\))Ax, where the o e
M J
over all grid points X and norm llun; = ‘u,u)x.
Uimilarly we define spaces ¢ {(y,ti, v lx,y? ant v tx,y,t0 Wwith comonr poois
[ N N
ucts and norms
{u,v) = Z(u(y,tF,v\y,tjkAyAf s o Bull o, =
y!t P T A ]
(u,v) = ) (ulx,y),vix,y) Axby Do = L
s X,y z Y v > R ORY » XY
. L [
v = (U(‘ vet) VUK GY S o ARAY I N = iy
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As in [3] the analog o!f Duhumei's

principie gives uo

lLemma 5.1. If the difference approuximation is stable in the wense ot (% £
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which in turn is equivalent to the solvability assumption.

Therefore we shal.l

rvestigate the problem (S.1ih) only for bounded valuer o z, i.e. in a compact

tumain 0f parameters lslzl:lzml, Osgzlm,

xS be
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«2 shall choose the constants At-AX and At,Ay such thal the eigenva.uen ~, 0

tre matrix (AL AXDAa 4 % tRa wil satistly

srom now on the fractions At/ax and av, oy wiil be inciuded in A ard i
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Jonsider the characteristic eguation
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The matrix M(¢') may be represented in a torm

are ana’ylic junctiong o

L'\

rena ! coactant.

®
o
(GRS ¢
[

it turns out that ei(c') are the coefficients 5t a

ponding to one of the equations {(5.26). Using only the dicoivavivity Jf the
difference approximation and applying the techniygue of the
Weierstrass preparation theorenm tsee [3]) we cbtain some the
iraginary part of e ('), Tren vl Freise oconstruction of 4 oymmetrIzer
‘see [2]) may be applied " vy to the matrix Mio'},

I Cection 9 we inally consider a neighbourhcod o the point  §£=7,

z=}. The inner coordinates ' = ":',2',ri. where

ro= lg-W}2+'Z-l 3

L—

{n-g)/r, 2' =

gt =

~ - - . . 5 B . . . .
9.1 the biock structure of the matrix Lik,{,z) 1s investiguivel in a neighbourh
o g point ! = (¢',2',0) with =z %0 In subsection 9.2 the ringular case

0 £*70 G
2. = 0 is considered, The problems u:is "~ vl s thaore Loriled
in silu2ction 8.1, However now tne matrix Lik,f,z) cannct be reprecented

12 a product of matrices Lj and LQ and theveiore the cituntion Tl

wmplicated. In the last subsection shearor 5.1=5.2 are proved Tocaliy.
inoSection 10 we discucs the reond bLained norart arr ot r -
wle generalization for other differcnce appr Xomations witll crmractor cotic and

nen-characterictic boundary.

In subsection

i

Dol
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6. Preliminary Transtormations and Result:.

+.l. Linearization of the difference problem.

The difference operator L(Ex,g) in (5.21), which is a polynomial or crder

2 in Ex’ will be written in a form

i
{(G.1) L(Ex,c) = Zm Av(cﬂ':; , A (o) =0 ftor v oz 2.
V=)

Yere m is defined as in (5.5) and by ¢ we denote henceforth the pair (£,27.

o, considering L(E ,z) as a matrix polynomial of crder m, we introduce ito
X

earization
. AV [N
(6.2) LUE o) = Agie) + A (o)

. N v . e . PR
where the square matrices A, and A1 ¢l order mn are detf'ined ac in (P.6.

0

5

'\, . .
The operator L(E ,r) acts on the space of mn-dimencional gmoela voonor Sunct on
X

(6.3) ulx) = (u(]>(x),u(2 {m) \

R
~—
—
=
—
o
~
—
=
~—

The boundary operator S(E

15 replaced by a nxmn matrix
X

St ulx) is a solution of prublem (5.00), then definin: »~rid fanetions:

! \ o L~ - -
) ulx) = (u(x),EIXu(X),---,hX Ju(x)), Fix) = (... 0, x )
. /\‘ - .
. vtain that u(x) is a solution of the problen
u s
() Lk ,o)ulx) = %(x)
" v
fp)y  Slr)ulo) =4
[ [ o +

)(x),...,u (x))*' , where u( /(X)E@E, VoSl e

v
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For o problem (6.0) estimates (L, 17 =00, ) Locome correspondingiy thee

4

. ]z’—‘z(),\f? "o / "‘",_"‘"‘)l . e \
vl 8) (—1—2—]—-—/ ol o kit ! i + )

R ol N L . "‘ = .
)L The norm JF 1T in Loy s derined s [Voeax) ],

+ 0t . ! o

fhe torm (6.9))are equivalent to tne correcpond.oer oot ot T e

metes (6.7)-(6.9). For simplicity of nctations we remove *he cymiol o

o the above problem and eotimat oo,

Lo Preliminary analysic of the w-mnt vy Dk g0,

Je denote here the norm in ¥ {x. i, b Tootend of e e D W

s U5019)y originally acsting on toe voandary vaducr of wlx boooo oL e

CGL)=(6.0) tor problem (G.0) with aroateary Fixd (oo i

To the difference aoperator LUK o) n (500010 copre s oneds 0y =t o)

aprloed to the mn-dimernsionn! veotoe wloh, Dy To ey ool e

troblem (5.22). In the following we shull deal only with probdlen on 6 wrs

; v ) = wlu=11i et LA o000 . - LWl
= V,f,) = A ¢ fl}, - l!(r ‘!/ = M ¥ . 4 foow Ty vt t
Veording Lo orepresentat ion (60w concader L gn b e o matew v Ly
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A iy A ] ) . .
i ol' degree m. Then L{k,;) = Ao(g) + KAl(c) is the linearization of L(x,r) as

described in subsection 2.2. Formula (2.10) is rewritten as

- v J —
| (C.11) E(k,0)L(k,0)F(x) = L(K,Q)@I(m_l)n,
g where tne matrices E(x,z) and F(k) (which should not be confused by the shift

operator EX and the grid function F(x)) are defined as in (2.9).
In order to study the behaviour of k-matrices L{k,z) and ﬁ(K,c) at infirn-

ity introduce

Hol 0 = e = i) + K (o)
and
o) ,
( L(m)(K,() = K?L(I/K,C) = K(Z—l)l+~((K+1V2W°093(E/?)C(m)-(ﬁ(m))j/’

where
: o) (w), N
B = C LKL E = - Ax + R
cern similarly to (6.11) we have
! v
13) F(m)’V,f\'(m)’r T)V(u)/r” = | o (e yr
? (m=1h *

M (o) . : :
ST {«,z) and F (k) defined oo oin (0.11).
Fxpression (. 10) tor Lty 7 ) may be concidered oo polynomial £00

LA A

ooecond depree in O wilh coelficivyns dencrdding onow and 0 Do we write

I,(k,f,,‘ ¥ ,k,’ .
el similarly
rv;)
[ R . ’
) .
Consider Lhe charactopioh \
) ) '
i I,) It("s( ‘ l Yo i
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According to assumption 1.1 the matrix € = Ag+BB 1is singular for any o and .

Tnerefore, if (z-1)x = 0, then iL(K,c)l = [C/?P[(K+]\cos(g/g)7_ci ., and fur

eneral k and  there is a factorization
(6.15) [nle,e)] = (2=1)k oplx,z),

where p(x,z) is a k-polynomial with coefficients analytic in g. Since

!Y.(m)(

O,;)[ = 0, the matrix L(w)(K,C) has for any ¢ an eigenvalue « = 0. Hence,
'{«,r) considered as k-matrix of degree 2 has for any 7 an eigenvalue Kk = w. Thrre-
fore the polynomial p(k,z) is of degree 2n-2 at most.

tatement 6.1, The polynomial P(K,C) is regular for any ¢ = (£,2) with real £ .

i
“reof. Suppose that for some [, plk,z) = 9. By taking x = e @ cne ol tnine
Lle,g) = k[ (z2-1)I+2C (icas(w/2)counlgre) + )]

C = A cos(&€/2)uin(@/) + B oinls/0)cos(@/P).

The matric C is daigonalizable

~

C diag(O,Xl,A?,...,An_I

Al Aj are real, distinct and non zerc. Then

n~1

CLoe) [Re,n) = e mny T Tremigeon (3 conlo/o)ean (00 00
3l 3

1

Heepetare, for some 1 2 3 ¢ on-1 we have

Z—J+Pki(i conl/a Yoo le /o0 4 2 ) = ¢ fur any Q.
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2 ., .
't cos(g/2) # 0, then taking © = 7 we obtain z = l-BAj, i.e. 2 iz real. On the
sther hand, for @ = O it follows that Im z # 0. If cos(£/2) = 0, then

2 2 .
v l—é?bjcos (¢/2) with bj # 0, and therefore z depends on . 'The above contra-

dioctions prove the statement.

For z # 1 the characteristic equation (6.14) may be written in a form
{6.17) k plk,g) =0
and has, generally speaking, 2n-1 finite roots including the constant root x« = i,

"
'n order to investigate the infinite spectrum of L(k,z) we consider the charac-

terictic equation

,.'“18) l}‘,(m)(t(,[,)l - IKXTL—'L"L(OO)(K’C)I - K(m—;f’)fl‘t‘(m)(K,c)‘ =
i A(‘m)(n,r,)! = lK)L(l/r,(,)\ = L) = (ne ‘K(rﬁ“_;} (1/w,0))

Senoting by

4 «-rolynomial of degree at most ©n-C we rewrite equalion (6.18) for z # 1 in u

Torm
- (m=-2)n+l (e . .
i) R N R
Fquation (€.19) has a constant root « = U of multiplicity at least (m-0int
’\’ . N . - N
wnd hence L{k,z) has an eirenvalue x = = of the came multiplicity. o the number

911 roots (counted according to their multiplicity ) of couation (G170 topether

the zero root of (6,19) ic equal to nnm.

Sterement, 6.2, Let o= (£,7) with wo= 0 oand £ # Dym omodin, or with |/1 sy,
# 1 ind any O ¢ £ ¢ 2n. Then cquation (G017) hao no roosts v with ('( = 1.
1
|
1
N
.

[ 99 - \ R L SRR XY VN S . _
e O S, s, . .
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Proof. Suppose that k = elw

that z = 1-—2)\J(i cos(tp/?)cos(«i/?)h\j) for some

rhe amplification matrix G(@,£). 1f |z| 2

@ =7 = 0,1 mod 2m.

Statement 6.3, Yor r =1 = (0,1)

0
plicity n-1 and, besides the simple root ¥ = 0,
I«| # 1.

troof, Tet go= # 1. Then

o
-~
~
-
o~
—
It

and therefore

. a
Joz e,

another n-1 finite

)¢

i.e. 2z iu

1, ctatemen', 9.1 implier

equation (6.17) has a root k¢ =

that » =

1 of

mul

roote ¥

|2 (Alk-1) 6,0} = «{z-1) TT 2la (e=1),x,1)

n
P(K,CO) = 1(£1J(K-—]),K,C_}):-IT [H'j(K—i)(>f+'l—:1'.,(»—'! Yy

=0

"t i~ now obvious that the equation p(v,r)u) = 0 has o root v o= 1 of multind
-1 and another n-1 roots of the torm k, = (a, +] ),’(zt,—i PooU e i, are red
J J J o
Cerent from zero, 'rl # 0. Moreover, accerding to statement 2.0 o, - 7 1
5 -
= 03,0, (n#1) /7, and the rect of a et ive.s Dinee b b e
1 1
roare disbinety whoeo oo ey T RN ] . o :
‘
|
G vy
Coaentoo b v TN LR TR TS S E N O R R R L S S R LRl
- byoom=c sand e cimp e pont o =0
Cors Ar in sratement Gl owe concider o= fron) witlo oo T
"
’Y.Lh’(lj! f»l——‘\l + ’v’il)/“ ‘M,—]“TW ,!,"»'02.“,4‘+;‘\4'—1
I TR B KA IV R T oot o LT by [ T R O
)

is a root of equation (6.17). Then (£.16) impliec

I an

ti-

with

an cifgenvalue of

3
‘
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The matrix L{k,o) muy te Seetorized

i
] B \ . i N
L) Bl r)=—(1/00 0 becdon ey :
:
wh are roots of the equation L{u,e,0) = O, oing fornua (5,030 one sttalne :
T ‘
i
[r(x,z)| = const. 515;,\p0(m,8,:;l}-;\W\u,{-,,;- ..
Snee o,n. = =2¢(z=1), we derive from (£.000)
IR plw,rn) = conut, Pl B N
o = 1, then :,;1 = 0, u,, = =(x+lJocrvfoog, 4
[“L%‘w": R P Ly, ° i Lyl =+ * .
()
voroarly b lk,0) ractorized
]
[P . ~l
. I N . . 2
[ i kgt ) = =, + ) Lt
ol
[ N v I i {6, ) ST ! T .
“ Lo ame o [ERS TN T S UL ST S 1 4TS I [ A dopree el
5e
l\vno‘)( . )
e P feyn) = conntLey T — ot .
e She polynomial ptegd, o resuiar o om0 sy BRI A
Lomaoals F‘”(q,ﬁ,’)) arnd I‘;,(ﬂ,f’»,—(r+z/“fi"'.,u oo regglor U s,
Do Ueor the abewe poiynoamials the netat s ! . TR I P T W ,
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sy lai+ (Bl # 00 Assumption 1.2 lmplics aic. shal wne degree g -

— 8(’ -
n-1 .
v K l'\l/"’ F\ - I"'\—‘J-,H’“
)
ad
n-1 , -
S TN O B A T O S O SR E LD
Consider now the x-matrix I(x,7 ! ar the poipn o= (60, e
Liw,o) = o0/l beikslicon /000,
P matrix € = C{k,&) is sinpular of orler one. The matrix e+l )coslg/0)=C
recular for £ # 1 and L{x,nm,]) = & {«+l1) . Therefore iix,0) ¢ oinpular of
srder one for any O < £ ¢ Pn. We may upply to bthe w-matrix Lik,n o the Lheory dev-
1 £ 70 s g W N¥oapply too ! Lk, L ¥4
“toped in Jecticon 2. According to lemma 4.0 there 1o v vest oy funetion (D[,jku,l%),
whice components are homogfeneous polynomials in o and £ of come depree q(.,—},

ot (/\.),H‘T{{)(D“(Q,B) o (D"\"l’i“‘ty G et e tob Tope o oy

to2L Then kDU(u,B) concidered an o fuanction o w Coronn gmiven f L0 sing-

v

c s

Ve ehor (DO

ot tunntion of T(k,o ). The deeres of o8 a B dinov Iooalon ey v Ui
S
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) i
Spce spannel by the veevors ¢ et e Hixed foaard ool v, T FF S omed Dy
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ding to demma D01, dim VoLE T = re o0 T vertor gl b Te e et lonadd
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.

wO(K,E) = (@

0.26) a8k, (as8)5 e T (a,8) 3 = ¥ () )

as in subsection 2.2, we denote ty Fl(«) the Tircst o ocolumne of tiee

where Y

4 . . N ) R : . v
matrix F(k). Then wO(K,i) is a singuluar root function of the matrix Lik,6,17.

we also detfine

N T .
Vo(e) = optg (k,0)) , c €T

(n.07)

+1. singular eigenspace of the singular matrix L{k,£,1) of urder one. Toce aceree

M

. ) N o ,

L e OW(K,S) in k is (n-1)/2+m-1. “ince the vectors @O‘H,G) and therefore @ ik,8)
O i

4., not vanish for any and £ # 0, 1 mod On o, we vtain from iemma L1

K
(6, 08) dim Vo(g) = (n=1)/2 +m for § # 0,1 mod 2n.

A, " n, ‘u ) N
'+ is obvious that VO(U) =Ker A and VU(W> = Ker E, where tLe rmaxnm matel oo A
and T oare defined az in subsection 5.h.
We snall build a setr of veeror-funoiions W‘(E), R N I L T AR S N
araiytic and independent for 0 ¢ £ < om, which form n bac.o of ?U\F,) AR ARTEON

ToF O,n mod 2w, Namely, by choooing fn=1)/0 dietinet and not imasinnry valnes

s Ay we determine

"’X(n—l)/?

. . / - ; [
wi\{) = rl\ki\ﬁ))mr\« N A B S YU SR
Wleere
K LE) = (conlb /) b a oo Ira i teon il 0 2k e Tl Ey
. 5 .
st
AT bk lff,‘: e r’“,f
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! R 1 v i [ ) v -
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These projectors are obviously not defined for z = 1.

Let us denote by Q(KJ), J=0,1,...,t, a small circular neighbourhcod of
the point Kj containing the contour Fj, and by O(Q(Kj)) - the space of vector

functions w(K)ECmn analytic in Q{x,). We suppose that all these neighbourhoods
together with the set Q(Km) obtained from Q(KO) by the mapping « + 1/k are
mutually disjoint. Using equivalence (6.11) we can replace the projector PJ(C)

by an operator Qj(c) : Q(Q(Kj)) N given by

(7.14) Qj(c)w = (2ﬂi)_l §F F(K)(L-l(K,E)Ql(m_l)n)w(K)dK .
J
Then the images of Qj(c) and Pj(c) coincide when z # 1.

Denote Q(Kj,co) = Q(Kj)xQ(co). Considering the factorization in (6.20)

we obtain that 54 and s, are analytic functions of x and ¢ in Q(Kj,go), and

(7.5) s, = 2x(z-1)/[(k+l)cos(E/2)] + O(z—~l)2 » 8, = —(k+l)cos(£/2) + 0(z-1).

Let us consider the most difficult case q§1) # 0, qgg) # 0. Since

|s1 + Cc(k,&)] =s po(a,B,s) and po(a,B,O) = po(a,B,sg) =0 for k = K>

L = CO’ it follows that s = 0 and s = —SQ(KJ,CO) # 0 are eigenvalues of the
matrix C(Kj’CO) and the eigenvalue s = 0 1s of some multiplicity p > 1. As
in lemma 3.4 there is some nxn matrix D(x,£) analytic and invertible for

«€Q(x,) and ¢ = (E,l)EQ(cO), such that

J
(7-6) D_l(KaE)C(K>€)D(K,£) = diag(NO(K &) 9N1(K;€)9N2(Ka§))9
where
0 0
0 1 0

(7.7) NO(K,E) =
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Here e = k(K,E), k =1,...,0-1, are analytic functions of «,{ with
P 3 H 3\
ek(Kj,go) = 0, the matrix Nl(Kj,go) has the eigenvalue —SQ(KJ,CO/

(

and the eigenvalues of the matrix N ) are different from O

2\ %308

and —sz(KJ,co). We may also assume that the first column of the matrix D(k,£) '

is equal to wo(a,B) - the singular root function of the singular k-matrix
C{k,&) = Aa+BR. It follows from (6.20) and (7.6) that

-l = edi odi 3 |
(7.8) DD =~(1/2) dlag(521+N0,s I+Nl,(slI+N2)(s21+N2)) dlag(blI+N0,s I+N_,I)

1 271’

For the sake of brevity we omitted the arguments k and £ in the above matrices.
Since the first matrix on the right hand side of (7.8) is invertible, we may
replace the operator Qj(c) by a new one, which is denoted by the same letter

(7.9) Q;(z)e = (2ni)’1§ F(x)[D(x,§) aiag( (s, 1+8,) ™, (s, I+N >'l,l)@1( 1o(k) dx .

r. 2 1
J

m-1)n

Obviously, the operator Qj(c) and the projector Pj(c) still have the same image
for z # 1. Let us define

(1)

3 Jolk Ydx

(7.10) @ z)e )‘1,I,I)®1(

m-1)n

(2ni)_l § F{c)[D(k,£)diag((s.  I+N
r 1770

J

(2)
J

(7.11) Q. (g)e (2mi)~t § F(K)[D(K,E)-diag(T,(s21+Nl)'l,I)GI(m*l)n]w(x)dK
r,
J

Lemma 7.1. a) For z # 1 the space Im Qj<C) is a direct sum of the spaces

2 .
Im le)(c) and Im Q§2)(§) of dimensions qj—qgg) and qg ) respectively. .
’
b) For z = 1 the space Im Qgg)(c) is a regular invariant subspace of the
(2)

k-matrix E(K,C) still of the dimension q

J
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(2)

¢) There is a mnxq g

(2)
J

whose columns form a basis of Im Qgg)(c) for any ;EQ(CO), and there is also a

(2)
J

(2),y(2)
P

matrix valued function X, ’/(z) analytic in Q(CO),

(2)_(2)
43

xqJ matrix-valued function M, ‘(z) analytic in Q(;O) such that

(2)(;)

n, N,
(7.12) Al(c)x (z) + Ao(c)xj =0 .

where Mée)(co) is a Jordan matrix with the eigenvalue JE
Proof: It follows from (7.9)-(7.11) that

(l)(

{7.13) Im Q.j ¢) © Im Qj(c) and Im Q(g)(c) < Inm QJ(C)-

J

On the other hand the operators Qj(g), Qsl)(c) and Qgg)(c) are unchanged
it the unit matrices (except s,1 and sgl)in formulas (7.9)-(7.11) are replaced
by zero. But then obviously
. _ al1) (2)
(7.14) QJ(C) Q (g) + 9y (¢)
and also
(1.15) @\ o er e = m {0, @l o ter Qe = m el

[t follows from (7.13) and (7.14) that

(1)
J

(2)

(7.16) 1m QJ(L) = 1m Q, "(¢) + Im QJ (¢).

In order to prove that the above sum is direct, one should show that the

equality le)(c)wl+Qg?)(c)w9 = 0 implies Qél)(c)wl = Qgg)(c)o2 = 0. By (7.15)

we may replace wl and wz by some QYEO(R(x,)) such that QSJ)(L)m = le)(g)w] and

J
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(2) _ A(2) -
QJ (g = QJ (;)w2, and hence Qj(c)w = 0. Let us denote the whole nmxnm
—l( 1
0
L " (k,z) respectively. Then the matrices Lo(x,c) and Ll(K,C) for z # 1,

matrices under the integral sign in (7.9)-(7.11) by L ~(k,Z), LI (c,z) and

2
and the matrix LE(K,C) for all z are right divisors of the matrix E(K,ﬁ).

Since the integral § Lal(K,;)w(K)dK is zero and t(K,Q)Lal(K,C)W(K) is
r

J
anglytic, it follows by lemma 2.4 that Lal(K,C)@(K) is analytic in Q(KJ)-
But then also L;l(K,C)w(K) and L;l(K,;)w(K) are analytic in Q(KJ), and
therefore le)(c)m = ng)(c)w = 0. The k-matrix Ll(K,E) for §€Q(;O) with

z # 1, and the k-matrix LQ(K’C) for any CEQ(CO) have correspondingly
(2) (2)

qj—q'j and q:j eigenvalues surrounded by the contour [.. Therefore for

z # 1, according to remark 2.5, the dimensions of Im Q(l)(c) and of Im Qég)(c)

J
are correspondingly qj—qu) and qge). (Note that for j # O, qj—q§2) =
(1) (2) _ (1),
'JJ but 9%h"9% = 9 +1).

In order to prove part (b) of the lemma one should show that for z = 1
the matrix LE(K,L) satisfies the conditions of lemma 2.5. 1t remains only
to verify that any eigenvector ¢ of LQ(K,;) corresponding to an eigenvalue
K€Q(Kj) is not a singular eigenvector of E(K,Q}. But the vector ¢ may be writ-

ten in a form @ = F(K)(D(K,E)@l(m_l)n)w, where the components of the vector

Yy corresponding to the block NO are zero. On the other hand the singular eigen-

A
vector of L(k,z) is given by

Bk, £) = F(k)(D(x,E)®1 )+(1,0,...,0)" = F ()@ la,B) .

(m=1)n L

A
Therefore the above vector @ 1s not proportional to mO(K,E).

2 ) S
Since the operator Qg )(C) is anulytic in Q(LO) and Im Q

()
J

(¢) 15 of the
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(2)
J

constant dimension qgg), there is some basis in Im Q,” "(¢), which depends

(

analytically on z€Q(z.). So we define the matrix ng)(c) such that its col-

0

umns form the above basis. We may assume that X§2)( (2)(

J
(2)

¥(k) is a nquj matrix whose columns belong to @(Q(Kj)). Then

) =Q £)¥(x), where

(2)

By@x5P ey = -k (@)elP @) (xv(e))

(

The matrix Qj

w(2)
5

2)(;)(KW(K)) may be represented as X§2)(c)M§2)(c), where the mat—

riy ) is analytic in Q(CO). The matrix LE(K,QO) has in Q(Kj) only the

(2)

eigenvalue k = Kj of multiplicity qj . According to lemma 2.5 we may assume
(2
J

ponding to the eigenvalue k = Kj. In this case the matrix Mj(c

that the columns of X )(go) form a regular Jordan sequence of t(K,CO) corres-

O) is a Jordan

matrix with the eigenvalue «
(1) (2)
J J

in the analogy to lemma 3.4 we can prove the following

(1)
J

3 The lemma is completely proved.

The operator Q. '(z), unlike Q."’(z), is not analytic in Q(z.). However

0

(z) depends analytically on r€2(z.), i.e. there

)

Lemma T7.2,a) The space Im Q

(1)
J

0

exists an mnxq matrix valued function Xél (z) analytic in Q(co), whose

(1)
) (

columns form a basis of Im Q z) for z # 1 and are independent also for

z = 1.
(1)

j (¢) belong to the singular eigen-
(1)

they form a singular Jordan chain of length g,

b) For 7 = (5,1)69(;0) the columns of X

space Vo(g) and for ¢ = %o

generated by the singular root function ao(x,go) at the point k = «

j

e ————

il doibobia i

dniiasanaithitetieg
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¢) There is a qgl) X qél) matrix valued function Mgl)(c) analytic in Q(co)
such that
a (1), .,.,(1) v (1)
(7-17) Al(E)Xj (C)MJ (¢) + AO(CJXJ (¢) = 0

and the matrix Mgl)(c ) is a Jordan cell with the eigenvalue Kj.

(1)
J

0

If j = 0, the number g in the statement and in the proof of

(1)

3 +1.

this lemma should be replaced by q
Proof: The operator Q;l)(c) in {7.10) may be written in a form

(7.18) oﬁ-")(c)w=(2ni)‘l§ Fl(n)mk,t:)[(s11+N(.<K,e)>'1eo Jo(x)dx
, ] ,

J
where the vector (k) is now n-dimensional. If we multiply the whole integrand
4"
in (7.18) on the left by L(k,z), we still get an analytic function in Q(Ki,io).
Note that the first column of the matrix Fl(K)D(K,g) is the singular root func-

tion $O(K,£). Compairing the determinants |le+C(K,g)| = slpo(a,B,bl) and

= 1 p=-1 .
IslI+N0(K,£)| = sl(telte2slt"'ie£—1sl ) for (K,&)EQ(Kj,CO), one obtains that

the equation p.(a,B,0) = O at the point ¢ = ¢ is equivalent to the equation
0 (1)

44
l(K,CO) = fl(K)(K-Kj) <,

(k,2) on the left by mat-

0
el(K,CO) = 0. Therefore, as in lemma 3.4, we obtain that e
where fl(Kj) # 0. Let us multiply the matrix sll + NO
rices El’ E,» E3 and E,, where E2 = diag(l/sl,l,i,...,i) for 3 # 0 and

E, = diag(K/sl,l,l,...,l) for J = 0 and the rest of the matrices are defined as

]
in lemma 3.4. We arrive at a matrix NO(K,L), which is analytic in Q(Kj,go), the

t —-—
inverse matrix (NO(K,c)) 1 is analytic for (x,g)€ijQ(aO) and for z = 1 we

hiive

_——

it
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(NO(K,c))' = diag(f(x)/e (x,€),1,1,...,1) for J # 0
(7.19)
(NO(K,L))-l = diag(f(x)/(Kel(K,E)),l,l,...,l) for J = 0.
Therefore _q(l)
(7.20) (Npleseq)) ™ = diagl(e=x ) J L1,0,000,1)
l.et us replace the operator Qél)(c) in (7..8) by a new one which is again
dernoted by le)(g)
N (1) _ -1 3 ' -1,
(7.21) Q, " (g)e = (eni) F LDk, ) LN (k,2) 740 lo(k)dk .
. r n-p
J

e ohove operator le)(c) depends analytically on f 1n Q(LO). Since the

v een “k(K,g), k = 1,2,3,4, are invertible for z # 1, the operators in

(7.18) and in (7.21) have for z # 1l the same .mages of the dimen:sion

(7.20) dim(Im Qél)(a)) = qgl)'

s

"t . clear that the integrand in (7.21) multiplied on the left by f(r,n) Leo-

¢ analytie 1n Q(KJ,CO). 1t tollows from (7.19) that for ¢ = (£,1) the ima-e
o (1) < a e
o Qj (z) is spanned by the vectors mo(x,g) with ditferent « and,

N
therefore, belongs to the space vo(g). As in lemma 3.4 we determine n-dimen-
sional vector functions

a, k-l ' (1)
wk(K) = ((k=x,) * ,0,0,...,0) for k = O,l,...,qJ -1

and o matrix Yi(x) built from the columns wk(x), Thern the matrix Xgl)(c) is

defrned by
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Since Qj(co)wk(x) = E%' the columns of Xj

k 3

singular Jordan chain of length qj ‘renerated by the root function

&b(K,CO) at the point « = Kj . As already noted in the beginning of this i

subsection, the equation p.(a,B,0) has (n-1)/2 roots « with |k| < 1 and the
0

P

same number of roots with |k|>1. Therefore qgl) < (n-1)/2 and qél) < (n-1)/2+1.

Formula (6.28) implies that qgl) < dim vo(c) even for j = 0, and according to

lerma 2.1 the columns of Xél)(co) are independent. The neighbourhood Q(co) May

l)(

z) are independent for any z€Q(z.)

be chosen so small that the columns of X; 0

and ,according to (7.22), form a basis of the space Im le)(c) for z # 1. The
last statement of this lemma is proved as in lemma 7.l.

The case j = = requires a separate consideration. Due to the equivalence
in (6.13) formula (7.4) is replaced by
(7.2h) Q (gl = (eni)”t (J£r F(m)('()[I(m_l)nQ(Km—gL(m)(K,(,))-l]@(K)dK .
0

Transformation (7.6) is replaced by a similar transformation for the matrix

C(w)(K,C). Using (6.23) we change the definition of operators in (7.9)-(7.1') -

il

(71.25) 0 _(g)o = (eni)_l § F(w)(K)ll( #n(x,£)
r

0

m~-1)n

*diag((s T+N )‘l,(521+N1)'1,1)K2’“‘]cp(z)m\

0
(1.26) ol (2)o = (2n1)7 §r IO EPNINE N3
0

-1 7~
L™ 1ol )k

-diag((slI+N

N
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(2)

o«

(7.27) &' (g)o = (2ni)? § P (o) 8(nx,£)
r

0
- -m . - R
-diag(T, (s, I+N, ) L2y ™) ok dax

I(m—l)n

Lemma 7.1 is still valid with the only difference that

(1

[~

{2

o]

(7.28) dim{Im Q )(g)) = qil)'* 1+ (m-2)p for 2z # 1 and

(1.29) ain(In @2 (2)) = o{2) + (m-2)(n-p) for any cen(ty)

The presence of the factor K2~m in (7.26) makes the investigation of Q(l)(

. (T)
more complicated. Applying to the matrix SlI + NO(K,E) the same transforma-~

tions as in lemma 7.2 for the case jJ = 0, we replace the operator

Qil)(c) by & new one, which is again denoted by Qil)(c):

(7.30) Q  "(t)e = (2ni)7t § Fém)(K)D(K,i)[Ke'm(Né(K,c))'l@o Jolk)dx.
T, n-p

The above operator depends analytically on QEQ(QO) and has the same image ac
the operator in (7.26) so that formula (7.28) is still valid. We shall prove
the following

Lemma 7.3.a) There exists an mnx(qil)+1+(m—2)p) matrix valued function
(7.31) ¥ gy = M1 ) 5320 ()

analytic in Q(g.), whose columns form a basis of Im Qil)(c) for any ceﬁ(go).

0
_ %(1,1) . .
h) Tor [ = (g,l)€Q(cO) the columns of X_ (z) belong to the singular eigen-

1)

space VO(E) and for ¢ = they form a singular Jordan chain of length qi -

%o

("’)(

n
generated by the singular root function wo

K,&O) at the point « = 0,

L e dhannnn oo tiodie s i ol

h- PO T
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"3(]-,‘9)(

. A%
1'he columns of X, co) form a regular Jordan sequence of k-matrix L

corresponding to the eigenvaluc « = 0 of this matrix.

v
c¢) There is a matrix-valued function Mil)(c) anzlytic in Q(go) such that

Y

(7.32) K X o) « k0x ) =0

and the matrix Mil)(;o) has the only eigenvalue k = 0. According to partition

(7.31) the matrix ﬁil)(c) may be written in a form

Wy 8B

(7.33) M (g) = , vhere
M) §E2)

(7.34) Miz’l)(c) = Eil’e)(;) =0 forz=1.

q +m-2~-k . .
1
v (k) = (k ,0,0,...,0) , k = O,l,__.,qi ) emop

and p~1 sequences

m+3-k
we’k(x) = (0,k ,o,...,o)',...,~o’k = ...

The sequence of columns {¢, ,(k)} form a matrix ¥ (k) and the sequences
1,k

1

{w2 R(K)},.--,{wp,k(K)} form an nx(p-1) matrix WQ(K). We define

. . N L 4
Sttt smtilihes,

w)(K9CO)

SIS
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¥ = oM o)L 30 = oo,
and
YWy = @Y, ¥ ).

oo )

Let us note that the first column of the matrix ﬂiw)(K)D(K,E) is the singular

. (oo
root function @ )(K,E)). We denote the next p-1 columns of this matrix by

v % % .
m'(K,E),ﬁH(K,g),...,q%(K,g). Obviously, the last columns are repular root

ol oo
functions of L( )(K,g,l) of multiplicity m-2 corresponding to « = 0, and the

) N A
eipenvectors ¢%(0,€),¢%

- (o) . . (1) : . ().
eigenvector o' "(0,£). Using (7.20), where a5 should be replaced by q = "+.

(O.?),...,&p(O,E) are independent of the singular

0
Kj by 0, one obtains that the columns of %il’l>
chain as proposed in part t) of the lemma, and the columns of

(

(LG) form a singular Jordan

mil’g)(ao)

() . .
form a regular Jordan sequence of L oo’(K,z;o) corresponding to « = 0. Since

qil) < {n-1)/2, it follows that qil) + m-1 < (n-1)/2 + m = dim Vo(g). According

(

o]

Il

l’l)(go) are independent, and lemma 2.2 implies

to lemma 2.1 the columns of
(1

Y
X
)

that also the columns of }

. (CO) are independent. We shall choose the neigh-

(1)(

) small enough so that the columns of km r) are independent for

0
). Tt follows then from (7.28) that the columns of X'1)

0
basis of the space Im Qil)(c) (Qil)(c) is defined by (7.30)) for any cEQ(cO)5

bourhood (g

any C€Q(¢ () form a

o«

%(l)(

The matrix Man t) is obtained as in lemma T7.l. The diagonal form {(7.19) of tle

(1)

oc

' - "
matrix (NO(K,C)) 1 for z = 1 implies that the columns of X £,1) belons to the

a0 P ~
(&) and the matrices ﬁi"l} and Mil’ﬁ) satisfy (7.3h).

(2)

Let us return to the operator Qm‘

n
an V
l}.ace O

) in (7.27). Instead of the notations

W -~ - » ”"“"‘”M“'m"”ml'f o Aalcedbd s ah ;¢ ‘.‘h St

PO
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—~

2) (2 m(?)(c)

X, (r) and Mj )(C) in lemma 7.1 we use for j = » the notations XcD and

=2
g

2)(:f,). Denote the whole mnxmn integrand matrix in (7.27) by Lgl(x,c). Then
the matrix L2(K,c0) has in Q(KO) the only eigenvalue k = 0. The corresponding

eigenvectors are linear combinations of some of the last n-p columns

Y

)

A . . ; .
p+l(O,£O),...,gpn(O,£O) of the matrix Fm(O)D(O,EO). According to lemma 2.5 we may

n,
assume that the columns of Xi2)(co) form a Jordan sequence of LE(K,QO) corres-

ponding to the eigenvalue « = 0. We have shown also in lemma 7.3 that the columns

(m)(

. %(1:2) n
of the matrix X (¢z.) form a regular Jordan sequence of L

Zo K,QO) corres-

" n
ponding to « = 0 with eigenvectors ¢b(0,£0),...,¢5(0,50). Since the vectors

o) (DY
) F ), e

<o . i

{$>(O,€ )}' _ are independent of &gﬁ
(28

o) =0 (0,87, trhe columns of

o

3

form a regular Jordan seguence of E(Q)(K,gn) corresponding to x = 0. Let us

denote
KDy = ¥V k2 - w20, ¥, o = Mo x B |
(7.35) w0y = WD gy (320 o (2N ) oy By o35y
ﬁi2’2>(c) 0 Mil,l)(g) , M(l,?)(c>
(2,2)
M) = s M (£) = -
- o M - w2y w0

We can summarize the above results for the case j = « in the following

Lemma T7.4.a) The columns of the matrix Xw(g) are analytic vector functions in

Q(CO) and form for z # 1 a basis of the space Im P_(z). !
1

( >(

w0

r) belong to the singular eigenspace

", i 1
)ﬁ(E) and for ¢ = CO they form a singular Jordan chain of length qi )

) Tor ¢ = (5,1)69(&0) the columns of X

+m-1

[ - K) o2 C Yl A o W < RN g
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N oo
generated by the singular root function wé )(K,EO) at the point x = 0.

(2) (°°)(

(]

a¥
c¢) The columns of X (co) form a regular Jordan sequence of L K,co) cor-
responding to « = 0.

(2.1 1y = w252 1)

d) The matrix Mw(c) in (7.35) is analytic in Q(CO) with M
= 0 and satisfies the identity

(7.36) Ky (ox (o) + K ()X (e (z) = © .

Let us define the following matrix valued functions (we omit the variable r)

- (1) 2y L ) _ - ‘
((37) Xj - (X.j ,XJ ), Jd = O’la'--ata XFl (lexg" ,Xt)’ XF = (XO,XFl), ﬁ
X = (Xg,X,) ;

According to the partition of the matrices Xj’ the matrices XFl’XF and X

are also partitioned as

MCINNNED

In the same way we define matrices

= w2, (2) = a4 -
Mj = MJ emj s MFl = dlag(Ml’M2""’Mt)’ MF = MOQMFl
and the partitions
7-39) D@y 2 (D)
Mgy = Mpy ®Mpy *» Mp = M7 @M
We shall denote the matrices Mil’l) and Mi2,2) also by Mil) and Mie) respectively.

The finite eigenvalues Kj, J =0,1,...,t, split up into two groups: the group 1

wilicn contains Kj with IKJI < 1 and the proup 11 with lKjl > 1. Then the matrix




~ 10k - !

XI consists of all the matrices Xj with KJEI and the matrix XII is defined

analogously. The corresponding partial blocks MI and MII of MF are determined

M are also

in a natural way. We suppose that the matrices XI’ XII and MI’ IT
partitioned
1) (2) (1),,,(2)
.h = ( =
(7.40) Xp = (X70,x.7700 Moo= (M7 oM ™)
and similarly for XII and MII'
Let us denote
v n ‘
(7.41) T = (AlXF’ AOXm)

We shall partition the rows of the inverse matrix T_l according to the columns
of X and use the similar notations. For example:

(2) (rhib),

matrix XI I

corresponds to the matrix

Now we introduce the mnxmn dimensional matrices

)T and B = Ie(-M_) .

(7.L2) B = (M 1

0 F

Using (7.12), (7.17) and (7.36) one obtains the following main identity
(7.43) k,0)x(2) = (o) (B (0)neB (2)).

Lemma 7.5. a) The matrix X(z) is non singular for z # 1.

(1)

1 (C),Xil)(c)) together }

b) For ¢ = (E,1)€Q(r.) the columns of the matrix (X

0

with the first column of Xél)(c) form a basis of the space VO(E). Similarly,
1 1
( )(c) ( )(L)

the columns of the matrix X together with the first m-1 columns of X,

I

’

torm a basis of VO(E).

y-. - | a2 P i SN AT NN Al . .. -
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¢) For g = (5,1)69(50) the columns of X(g)(c) are independent of the space
1
( )(

N
vo(g) and therefore independent of the columns of X z). Hence, the column:z

of the matrix X _(z) = (X§1)(C), Xie)(

1 t)) are independent.

Proof. Since the columns of Xj(c), jg=0,1,...,t,», form for z ¥ 1 a basic of

the space Im P,(z), the first statement of the lemma follows from the cpectral

J

theory of regular linear A-matrices. As shown in the beginning of this subsec-

tion
1 1 1 n-1

Zq§)=z q§)+qi)=——2 ;

I 11
where the sums Z and Z are taken over J = 0,1,...,t, with KJ belonging recyp-

I 1I
tively to the groups I and II. Then the matrix (Xé%)(;),xil)(c)) has
Y qgl) + qil) + m-1 = (n-1)/2 + m-1 columns. Adding to these columns the first
1

we obtain sequence of (n-1)/2+m vectors, which consists at the

(1)
0

point ¢ = CO of singular Jordan chains generated by the singular root functionc

wo(x,go). Then, according to (6.28) and corollary 2.1, these vectors form a

basis of the space VO(EO). If the neighbourhood Q(CO) is small enough, the
statement in the last sentence remains true when CO is replaced by any

¢ = (5,1)69(;0). In the same way one proves the second statement of b). Accord-
(2)

ing to lemmas 7.1 and 7.4 the columns of X (QO) form a regular Jordan sequence
of the k-matrix E(K,CO). By lemma 2.2 these columns are independent of the
singular space Vo(go). Again, if Q(co) is small enough, the last statement is

true for any g = (E,l)EQ(cO).

Denote T-l(c) = (z—l)T—l(g). The rows of the matrix T—l(g) are partition- 1
ed according to the matrix T_l(c). Analogously to lemma 3.6 we have the
following

=N — S s O
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Lemma 7.6 a) The matrix valued functions %_l(;) and (T-l(c))(g)) are analytic in
Q(go).

t) The last row of the matrix (T_l(; 3 = 0,1,...,t,», is non-zero.

0
Proof. The analyticity of T—l(c) follows as in lemma 3.6 from stability of the

(1)
))j

Cauchy problem, We should merely replace the functions wj(x‘) by

wj(K) = IKI—MF(c)|/|KI-MJ(Q)[ for |k.| <1

3!

0, (k) = T () |- Mm<;)_n‘11|/|1-x'lmj(c)| for x| > 1
and
@ (k) = K"llI—K_lMF(CH
and integrate X(C)(%O(C)+K§l(c))_lWB(K)T_l(E) around the unit circle |x| = 1.

Let z= (g,l)en(go). As in lemma 3.6 we have

1

Im T3 (z) = Ker T(z) .

" A
Let us fix some k different from the eigenvalues of the k-matrix BO(C)+KB t) for

(
1
any CEQ(CO)- Then we obtain from (7.43)

T(8) = T, 0)X(e) (B, ()b (£) 7 .

Let ve€XerT(z) and u = (ﬁo(c)+ %I(C))—lv. We suppose that the components of the vec-
tors u and v are partitioned according to the columns of X(z). The kernel of E(K,C)
consists of vectors $ = Fl(K)w » where @€KerL(x,z) = Ker(C-(32I+C)). Since the

matrix s2I+C is invertible at the point (x,z) and the kernel of C(x,£) is spanned by
wo(a,e), we obtain that the above vector ¢ is proportional to %O(K,£)€VO(E). There-
(l)(c) belong to ¥ (£) and those of X(Q)(c)

0
(2) = 0. But

fore X(;)uGVO(c). Since the columns of X
are independent of VO(E), we conclude that u

KI—Még)(c) o)

(2

= u = Q0
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(2)

and hence (T_l(c))(g) = 0. Therefore (T_l(ﬁ)) is analytic in Q(;O).

Part b) of the lemma is proved as in lemma 3.€.

7.2. Proof of theorems 5.1-5.3 in the neighbourhood n(co).

Let us consider problem (6.€) in the neighbourhood Q(co) of the point

%y = (50,1), where £y # 0,m mod 2n. We remove the symbol A~ from y and F and
write

(8) T(E,E)ulx) = F(x), x = vax, v = 0,1,...
(7.54)

() (z)u(o) = g
Denote v(x) = X—l(c)u(x), G(x) = T-l(c)F(x). We suppose that the components
of the vectors v(x) and G(x) are partitioned according to the columns of X(g)
and use the natural notations for the partial vectors. Problem (T7.Ll4) may now
be written as

(A) (EX-MF(C))VF(X) = G_(x)

F

(7.45) (B) (I-M_(£)E v (x) = G_(x)

(€) 8(e)x()v(0) + B(e)x (c)v (0) + Blex (e)v (0) = &

II

Define symmetrizers

R () 0
Rp(z) = [ 0 RII(C)] with Ri(g) = -1, R (¢) =1,
where ¢ is a positive constant, and
R (¢) = T. ,

We may assume that

*
MI(OM (2) € (1-6)T, M(£)M () & (1~6)T and M ()M (c) 3 (148)1.

#)See foothote in subsection 3.2.
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Then the symmetrizers RF(c) and R_(z) satisfy

>

C46) MA(ORL(M(L)-R() 3 61 and R_(£)-M_(L)R (LM ir) 3 61

Here, as usual, we denote by 8§ different positive constants.
Let us apply to equation (7.45) (A) the generalized energy method with

*he symmetrizer RF' Namely, multiplying equation (7.45) (A) on the left by

RV(—Ex—MF)VF in the sense of the scalar product in 1?(x) and taking real part

one obtains
»

*
- (
((MFRFMF RF)VF’VF> * vy 0)R

= - 2 G..>.
FVF(O)AX Re<RF(hx+MF)vF, ¥

Now it follows easily that

[

- “ 2 e -
(et d-HvFuu + (IVTI(O)| —c]vI(O)} Yax g K-HLFU'_

Jimilarly, multiplying equation (7.4%) (E) on the left by RQ(HMwEx)vm and
tuiting real part we have

* »*
<(R-MRMJE v ,E v >+ v (0)R v (0)8x = Re<R_(T+M_E Jv_,5_ >

1101 therefore
I

! SIE v I+ v _(0)] ax s KIs_i",
2 2 &
Addiny (7.47) and (7.48) and using that v_{ = "Ewiﬂ + !vm(ﬂ)} Ax we arrive
!
] Il . A ‘1 .-_.
7 L9) svl® + ((VI'(O)(‘ + v _(o)] —clvr(O)I Yox & KIGH .

remma 7.7. The condition (UKC) in the neighbourhood u(cq) is equivalent to

‘1o condition det g(co)xl(gn) £ 0.

Proof: The general solution of equation (7.4L) (A) for F

T = 1) is gpiven by
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w(xv,c) = (w&(xv,c),wb(xv,c),.--,u%(xv,c))vI(O) = XI(c)M;(c)vI(o).

The pnm~dimensional column vectors ¢,{(0,z), j = 1,2,...,n, form the matrix

J

XI(L) ani are independent and analytic in Q(g.). Therefore the matrix N(g,z)

0
in (5.30) may be identified with §(c)xI(c). So if det N(£,z) 2 6§ for any

. '\J .
C€Q(CO) with |z| > 1, then det S(CO)XI(CO) # 0. Choosing Q(g,) small enough,
we obtain that the converse in also true.

Now we are able to prove estimate (6.7) with |z, = 1. Let (UKC)

be satisfied, i.e. det %(;O)xl(co) # 0. Then it follows from (7.45) (C) that
(7.30) [v (o) s K([v (O] + [v (0)] + [a]).
Ky setting the constant ¢ in (7.49) small enough one obtains

2 2 2
Ivis < KOG + |el®ax) .

2
- 2 KIF 2 A 2
Since HGH2 = |7 l(c)FIIC < Sﬁ—j—:- and Jul® = §xX(g)vii < Kyvy we derive
an estimate |z-1]
"
, 2 Fi° 2
(7.51) hul® < K(—“——“—-+ e Ax)

|2-11°

which is obviously stronger than (6.7) for Iz = 1.

ol
Let us now prove in Q(co) the sufficiency part of theorem 5.3. We define

the operator P in (6.9) for QEQ(QO) as equal to the projector %(g) in (6.30).

Introduce grid vector functions

v = (b 502

' = ((z~1)v(l),v(9))‘ and G = (6(1),6(2))' = ((z-1)6"’,G

Then equations (7.45) (A), (B) may be written as

(1) (2))‘
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(8) (M E)Wvp(x) = Gp(x)
(7.52) . R R
(B) (I-M_(2)E )v (x) = G_(x)
where
mH (o) M) (1) (z1)

-~

M (z) =

>

M 0y oy w22 ()

According to part d) of lemma 7.4 the matrix M(e’l)(c)/(z—l) is analytic in
Q(;O). The matrix MQ(C) has the same eigenvalues as Mm(c). Hence, there
exists a summetrizer RD(C) such that

~

R (z) - ﬁ:(c)R ()M _(g) 2 6T  and ﬁm(c) 3 1.

-] oo oo

~

Applying to equations (7.52) the generalized energy method with the symmetriz-
ers RF(c) and ﬁm(c), we get in analogy to (7.49) an estimate

(7.53) s1° + (v (0] %4V, (0)]=c v, (0)|P)axs k(I 1) .
According to condition 5.2, dim g(g,l)vo(g) = (n+1)/2. Since the (n+l)/2

A
columns of the matrix S(g,1)X £,1) are independent, they form a basis of

the space §(g,1)vo(g). Then using (UKC) we obtain as in (7.50) an estimate
- - N - & 2

(7.54) [v ()] < k(v ()] + 1v ()] + (gl

Choosing the constant r in (7.53) small enough we arrive at

- P -0 :
[v(0)]“ax ¢ ELIGH + |t ax) .
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But
nﬁ( )u? = H(T-l(a))(l)blf < KiK.
wnd
N L PR Lk
coothat
l\A/(O)|2Ax < KUFIF + |g|2Ax‘
Jince

(2)(c)v(2)(o)l2 < K|v(0)]?,

N

|3(g)u(o)‘9 = l%(i)x(l)(c)v(l)(o) + BlE)X

«w heyn N . 5
[P(g)u(0)[ ax K(upn . lel’ax
Tz1-1 S A\ lz]-1 z -1 . :

o 1 1
Adding the last inequality tc (7.%51) and replacing T———T by we arrive
i z~-1 Iz(-l

fnally at estimate (0.9).

[ Yy

Consider problem (7.LL4) with F = 0 and let the estimate

l - ‘)
S hulf < K FTH‘?LT lel” ax
0 1

Lo toroany |:| 2 ]z”l = l+uUAx with G”‘”. Obviously, estimate (7.%55) is
shall show that (UKC) is then satisfied in
. }({uﬁxz(pu\vjiw) = 1 and VI(O} # 0, we define for

4

4 homopenecu: salution of equations (7.4%) (A), (B) as

oonger than estimate (6.8). We

indeed, it

¢z enle )
. 0]

,Z)Mv(CU,Z)V (0)Y.

[

i

uix )= ulx ,7) = X‘(QO M
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0]
To accomplish the proof of theorem 5.3 one should show that if estimate

(6.9) is fulfilled, then dim %(co)vo(go) = (n+l1)/2. Consider problem (7.4lh)

with g = 0. It follows from (7.52) that

Taking z = 1 + 2a.Ax and Ax tending to zero, we obtain that vI(O) = Q.

E)GII(Xv) and vw(O) =
v

) o —v l
vy (0 Z

II

It~ 8

~y, =
; Mw(C)Gm(xv)

For fixed F612(x) we consider v__(0) and v (0) as functions of cEQ(gO)

II

and denote them by v..(0,z) and v_(0,z). Since the matrix S(go) I(c ) is

II 0
invertible, the function VI(O ) may be computed with the aid of the

~(1) (2)(O 0)

Loundary condition (7.45) (C). Then v, (0,z) and (z-1)v depend

analytically on CEQ(CO)- The vector (v( )(O %, ), v( )(O,CO))v is given by

_.(1) -1 —_
(1.56) +Poe ) v o, ' = aF) = T oo ol
. v s 2V N4 = =
11 0" e 0 = Mil)(colm
B @t i)
. ) F(xv)
L ate 't

We consider Q as a linear operator acting on the space &.(x) of grid vector

m—l+(n—l)/2-

2
functions with values in ¢ Anslogously to lemma 3.7 we have the
following

Lemma 7.8. The operator Q is an epimorphism.

(1

Proof: The space Im Q is obviously an invariant space of the matrix (MII

(l)(

<

co) containing the image of the operator

e

PSP
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(T et i L e it

(1)

Since the matrix (MII (L;O)).l consists of matrices (Mgl)(g ))—l with different

. -1
eigenvalues x

J
rices (Mgl)(co))—l, Mil)(gn) containing respectively the imapges of
R o-1 (1 ~-1 1) ,
(toﬁ(& (co))J ) and of (™ (ju))i ‘. Aceording to part L) of lerma 7.0 the
. (1) . R oA ().
ract row of the matrices g (f.o)(m (v 0, cypet Lo (t“})m is non-zero. Recal-
ling that Mgl)(co) is a Jordan cell, one can prove now the lemma without diffi-
culties.
Let us write the boundary condition (7.45) (C) in the form '
Yy 1 ~(1 Y 2 2 .
3ox P v P 0,0 + 8x P (vB0,0)-(21) = 0

Suppose that g(go)x
*
note £ =0 (g) if 0 < § s |f/g| < K). Since

taking z-1 positive we arrive at a contradiction with the estimate

Therefore g(co)x(l)(co)v(l)(O,co) = 0. For suitable Félz(x) according to lemma
" . ~(1) “(1) '\«
/.4 we may obtain any value of the vector (vIT (O,{,O),voo (O,CO)) Since

the columns of X

spanned by (n+l}/2 independent columns of the matrix %(QQX(

5.3 is proved locally in Q(co).

0

, the space ImQ is a direct sum of invariant subspaces of mat-

(l)( 1)

LoV O,CO) # 0. Then ;(2)(0,2) = O*((Z-l)_l) (we de-

(o) = ¥e) x ()vP0,0)+x ) (1w (0,00
= ov(0,0)) + 0 (v P 0,0)) = 0 (-7,

Ig(i)u(o)lex < K T%T%E'HFlF-

(l)(CO) span the space Vo(go), the space g(co)vo(gﬂ) is

—
=




\m
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8. The neighbourhood of the point ¢ = (0,1).

Let us introduce the notations
A2 2 .
(8.1) r = Y]g|+]z-1|" , &' = £/r, 2' = (2-1)/r, ¢' = (£',2",r), «' = (k-1)/r .

By Ly = ( 6,2',0) ve denote a point with real coordinate 56 and complex 26

satisfying Rezb 2 0 and |c6! = 1. Then Q(cé) denotes a neighbourhood of ;é

in the three dimensional complex space ®3 of points ¢*' = (g£',z',r), and

QR(cé) consists of points ;'EQ(cé) with real g',positive r and complex z' such
that {2} = |1+rz'| > 1. By Q(go) we denote a neighbourhood of the point

Ly = (0,1) in the two-dimensional complex space of pairs r = (£,z) and QR(CO)

consists of points §€Q(co) with real £ and lz‘>l. To any point

3

' = (g',2',r)€EC” and any complex k' correspond f = (£,z) and « given by

(8.2) E = g'er, z = 1l+rz', « = l+ry!

é). Then one can sel-

ect a finite number of such neighbourhoods, which cover some neighbourhood

QR(CO)-

We consider problem (6.6) locally in a neighbourhood Q¢

3.1 Block structure of the x-matrix E(K,C) in a neighbourhood Q(Cé)'

According to statement 6.3 the characteristic equation Kp(K,CO) = 0 has a

root <’='i of multiplicity n-1, a simple root « = 0, and n-1 different roots
k= (aJ+l/(aJ—l) for j = 2,3,...,n. Equation (6.19) has for any EEQ(QO) a
root k¥ = 0 of multiplicity (m-2)n+l. Therefore kK, =« 1is an eigenvalue of

E(K,C) of the above multiplicity. In order to describe the roots « near

x = 1 as ¢ tends to CO we introduce x'-matrices

C'(k",6') = C(x,£)/r = Aa'+BB', wherc

{8.3) a' = a'(c",E') = k'cos(E/2), B' = B'(x',£') = {(x+1)sinE"/7)/r,

(USRS DUV SV SRR RPN




and

Le,g') = Lle,0)/r = 2k + Cl (kg ( (/)L (et

The values of £ and « in (8.3) are given by (8.2). Obviously L'(x',z') is a
matrix polynomial in ' of degree 2 depending analytically on the parameter

r'ea(c!

O)' For r = O we have

(8.4) C'(x',£') = Ac' + Big' and Lt(c',z') = 2' + C'{k',g")
Using factorization (6.20) one obtains

(8.5) L'(k',z') = -(1/2)(si1+c')(521+c)

where si = sl/r depends analytically on «' and ¢', and S, depends analytically

on k and ;€Q(co). From (7.5) we get

Y L S
sy ¢2 [(K+l)cos(g/2) * 0(2_1)}

and for r = 0, si = z' and s, = -2.
The characteristic equation [ "k ',C')| = 0 1n neighbourhood of the point
Kk = 1, 7 = %o is equivalent to the equation | 'I+C = sipo(u',B',si) =0

which in turn is equivalent for z' # O to the equation
(8.6) po(a',B',si) =0

For ¢' = ¢!

0 the above equation has a form

(8,7 =
’ polk'siE(,20) = 0

g’ - 4 P -r:j'-wﬂiv'p@‘;& ‘@i”’"
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and is regular according to «' alsc for zé = 0.

The last equation was investigated in subsection 3.1. If zb = 0 or
Rezé # 0, it has (n-1)/2 roots with Re x' > 0 and the same number of roots
with Re x' < 0. Therefore imaginary roots k' are possible in equation (8.7) only
for Rezé = 0, zb # 0. It is worthwhile to note here that if 55 = 0, the roots

x' are non-zero since zb # 0. Let Ki,Ké,...,K{ be the different roots of egua-

§l),qél),...,qé1). We select small neighbourhoods

Q(Cé) and Q(CO) such that for any Q'EQ(Cé) the corresponding point r belongs

vion (8.7) of multiplicities q

to Q(go). Denote by Q(KS) a small neighbourhood of a point k!, 3=1,2,...,t,

and by Q(Kk) a small neighbourhood of a point «,, kK = 0,2,3,4,...,n. In the

k,
neigkbourhoods Q(Kj) and Q(xk) we select correspondingly circular contours I'!

J

around Ké and T around «, . Then QO(KE) and QO(Kk) are neighbourhocods bounded by

T} and Fk respectively. The neighbourhoods Q(cé) and Q(;O) are supposed to be

o

:mall enough s0 that any root « of egquation (8.6) belongs for c‘EQ(gb) to

scme QO(Kj) and the remaining n-1 eigenvalues x of L{x,7) belong for
c€Q(co) to the neighbourhoods QO(KK). For =z # 1, c'€Q(cé), we define as in

£7.3) mutually orthogonal projectors

Pg”(c') = (2ni)7? 3& E'%K,c)El(g)aK s 0= 1.0t
k'€r!
J
(8.9)
P (g) = (2ﬂi)—l % i_l(K,c)Kl(c)dr , k=0,2,3,...,n
KEFk
P (g) = (2ni)” § (L(m)(n,c))"'ﬁo(c)dr
<A
0
i that

SR

S S h — e e et )
et giamtena s uk il R S i i .
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The projectors Pgl)(c’) may be written in a form

P§l>(c') = (2ni)? %K'erlF(K)[L~1(K,C)@I(m_l)n1E(K,C)Kl(g)rdx'
J

(8.9)
1

n

(2ni)™ J FOO[L (e t)” ®o(m_l)n]E(K,z)Kl(c>dK'

r!
J
Now it is obvious that the projectors Pgl)(c') depend analytically on g' for

z! # 0.

Lemmsa 8.1. The projectors Pk(c), k =2,3,...,n, depend analytically on c€Q(;O).

Proof: The matrix C{«,£.) is simply (k-1)A. Therefore there exists a matrix
— 0

D(k,£) invertible and analytic in the neighbourhocd Qo(mk)xﬂo(go) such that

f -1 L
(8.10) D “{x,£)C(x,£)D(x,E) = dlag(O,C2,03,---=Cn)

where the eigenvalues ¢, = ci(K,g), i=2,3,...,n,depend analytically on « and

r, and ci(z,co) = (K—l)ai. Then

a1y e, )L e, 2Dk, E) = diagl(z-1), l(ce,K,c),---,ﬁ(cn,n,c)]_l

where the polynomial %(c,x,z) is defined as in subsection 6.2. For z ¥ 1 all
the diagonal elements in (8.11) except z(ck,x,c)-l are analytic in Q(Kk) as

functions of x, and Z(Ck,K,C)bl is analytic in Fkxﬂ(co) as a function of x and
.. Therefore

. (g)= (2vi)™L @ F(x)[D(,E)dian(0,0 2 -1 -1

“x ’ 135’;( 5 /g0y QI\,.,K,C) ,0,---,O)D (:(,C)

B ) Bl (2)dc

3
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and the analvticitv of Pk(c) in Q(CO) is proved.

The projectors PO(Q) and P_(g) are not analytic as z tends to one. How-

ever, the following lemma holds:

(l)(

Temma 8.2.a) There exist matrix valued functions Xo(c) and Xw(c) = (Xm z),

(2

X )(C)) analytic in Q(CO), the columns of which arr independent for any

o

C€Q(§O) and form for z # 1 a basis of thespaces Im Po(c) and Im P_(z) respec-

tively. b) Xo(c) is one column matrix and consists of the singular eigen-

(1)

v
vector wO(O,E). The columns of X_ (£,2) form a singular Jordan chain of

length m-1 corresponding to the eigenvalue « = 0 of f(m)(K,E,l); this chain is
N, { oo
generated by the singular root function w( )(K,E) at the point k = O.

(1)

o (0,z)) form a basis of the space

Ker K, where X = diag(A,A,...,A). The columns of Xig)(co) form a basis of the

¢) The columns of the matrix (XO(O,z),X

space Im diag(0,0,A,A,...,A) and are independent of the space Ker %(O).
d) There are matrix valued functions Mo(c) = 0 and Mm(C) = Mil)(C)QMie)(C)
analytic in Q(co) and satisfying the identities

Y

Y
X (2)x (o (2) + X

|
o

NOINGE

(8.12)
K (ox (e (2) + K ()% (2) = 0

and Mm(c) is a Jordan matrix with eigenvalue k = O.
Proof: We consider only the case kK = » gince the case k = 0 is analogous to
the first one for m = 2. As in (8.10), (8.11) we have a similarity trans-

(w)( <w)(K,C)—l in the neighbourhood

formation of the matrices C k,£) and L

. (k. )xQ(z

o'%g ). Let us partition the corresponding matrix D(K,£)=(D1(K,E),D2(K,€)),

0

where Dl(K,E) is the first column and DQ(K,E) consists of the remaining n-l col-

umns of D(k,£). We may suppose that Dl(K,g) = wo(—a(x,g),B(K,E)) so that

P e 5 - [y B bt A oo e e o RO P
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(=) _ (=) .
Fo (K)Dl(K,g) = ¢ '(k,£). The columns of D,(x,0) are the eigenvectors of A

2
corresponding to the non-zero eigenvalues ap,aB,...,an and span the space
Im A. We may assume that the matrix D2(K,o) does not depend on k.

There is a following factorization

m—2L(m)( 1 1-m 2-m 2—m)1

(k k,z)) 7 = [D(k,E)diag(c™ ",k ,...,K

-[D(K,g)diag(z—l,l(ce,ch),...,l(cn,ch)]_l

where the second matrix in the product is analytic in Q(KO) for z # 1.

Hence for z # 1 the projector Pw(c) may be replaced by an operator

(8.13) q_(c)w

= (2ni)_l § F(m)(K)[D(K,E)diag(Kl‘m,Kg—m,...,K2_m)
r

0

®1( Jo(x)ax

m-1)n

which acts on the space ®(Q(k.)) with values in ¢™. The operator Q (z) de-

0
pends only on £, is analytic in Q(co) and has for z # 1 the same image as

Fw(;). Let us define operators

8.1) oM (g)p = <2ni>‘l§ P () (e, ) atag(c ™,1,0,00.,000T, ) Jo(x) ix

r, m-1)n

= (21ri)-‘l § F;w)(K)Dl(K,Q)Kl-mw(l)(K)dK

r

0
and
(8.15) Qig)(5)¢=(2ni)'1§ PO () D, E)aiag(1,2™, ... 2 et Jo(x ) ax

r, (m-1)n

=(2wi)'1§I Fim)(K)DE(K,C)K2_mw(2)(K)dK

o’ = CNRMRV LT 1. meomie- g s e SN
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(1)

where @ k) is the first component of @(k) and w(2)(K) consists of the next

n-1 components of @(x). Obviously Q_(t) = Q r) for any 569(50), and

as in lemma 7.1 one can prove that for z # 1 the space Im Qw(c) is the direct sum

ol the spaces Im Qil)(c) and Im Qi‘)(c) of dimensions m-1 and {m-2)(n-1) respec-

(l)(

tively. Since Qw(g), Q. r) and Qig)(c) do not depend on z, the above statement

(l)(

is also true for z=1l. Taking ¢ k) in (8.14) equal correspondingly to

m-l m-> (1)

-

K s s+++3Kk,1 we obtain the columns of the matrix X (z), which form a Jor-

("")(

«©

dan chain of length m-1 generated by the singular root function $ €,E) at

the point k=0. These columns obviously form a basis of Im Qil)(c). Since for £=0

wo(a,B) = wo(a,O)EKerA, it is easy to show that

Im Q

il)(o,z) = Ker diag(I,A,A,...,4).

“imilarly, taking w(e)(m) in (8.15) equal to

m-2-k m~2-k m-2-k,'
K K K

,0,...,0)", (0, ye-es0)' ... ,(0,0,..., ), where k=1,2,... m-?,

(
(2)

we obtain (m~2)(n-1) columns of the matrix X t), which form a basis of the

\
space Im Qie’(c). Thus, the columns of Xw(C) = (Xil)(c),xig)(g)) form a basis

of the space Im Qw(;) for any CEQ(CO) and, therefore, also a basis of Im Pw(g)
for z # 1. Since the vector XO(O,Z) = $ (0,0) spans the space

0
Ker diag(A,I,I,...,I), the columns of (xo(o,z),xil)(o,z)) form a basis of )

(2) (=)

Ker X. The columns of X, (g} form a Jordan sequence of L x,L) corres-

ponding to the eigenvalue k=0, This Jordan sequence is generated by n-1 root
functions, which are columns of the matrix F;m)(K)DQ(K,E). Since the columns of
D,.{k,0) form a basis of Im A and do not depend on x, it is easy to show that the

2
columns of XiQ)(cO) form a basis of the space Im diag(0,0,A,A,...,A). Let us
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recall that Ker %(0) = Fl(l)VO+Ker . If a vector & = <¢h’¢%""’¢ﬁ)' (nere

©)5P,5- - 5@ are n-dimensional vectors) belongs to Ker B(0)NIm diag(0,0,A,A,...,A),
then the "component vectors" ®, and @, are zero and therefore &EKer X. since

Ker ANIm A = 0, it follows that % = 0, so that part ¢) of the lemma is also proved.
(1) (2)

Since for any ;€QO(§O, the matrices X .

(1)

the matrix M (z) is a single Jordan cell and Miz)(c) is a direct sum of n-1

z) and X' “’(z) consist of Jordan chains,

Jordan cells of order m-2 with the eigenvalue x=0. The identities in (8.12) fol-

low now immediately.

Let us now study the projectors Pgl)(c‘). Let zé # 0. Then Pé

(l)(c.) (1)

has a constant dimension qJ . The pro-

l)(c') is ana-

lytic in Q(cé) and the image of P

J
jector P;l)(c’) may be replaced by an operator Qél)(g'):Q(Q(Kj)) —> ™ given by
(8.16) oM ee = )™ 4 Fy e o otk act
I"
J

For r # O the vector function @(k') depends analytically also on « = l+rk' 1in a

(
nelghbourhood of the point l+rk,, and therefore the images of‘le>(g') and T{‘\(h'\

(1) :

coincide. Cince Qj (r') iz analytic in Q(Lé) and for r = O obviously

( (1)

. ]
. ¢

1
Im Qg )(g') 2 Im le)(c'), it follows that Im Q(l)(c‘) = 1Im P," (') for any ¢'€2(c¢)

d
Sl)(c') a basis, whiech depends analytically on ¢'
(1)

and whose vectors are columns of a matrix X,

2

Therefore one can define in Tm T

(') given by

x{ Dy = le)(c')(W(K‘)),

J

1)

where ¥(k') is a nxq( matrix analytic in Q(Ks). Since the integrand in (8.106)
a¥
being multiplied on the left by L(x,z) becomes an analytic function in Q( ), we

obtain
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KRl et « Box{ Ve = o
Txvressing Qél)(g')(K'W(K')) in the basis Xgl)(c') as Xél)(c')Mj(g'), where

V%(a" is analytic in Q(;é), we arrive at the identity

)

8.1 K x P em D ek (ox D ie-0, wnere iV e)erem (o)

(1)

The characteristic equation |kI-M (¢")| = Ir(K'I-Mj(c'))| = 0 has for r#0

the same k'-roots in Q(Kj) as equation (8.6). It follows from the continuity

considerations that the equations ,K'I—Mj(C')l and (8.6) are equivalent in

4

Q(Kj) also for r = 0, and therefore the matrix MJ ;5

(1)
P

In the next subsection we shall need the following

) has the eigenvalue Kj

of multiplicity q

Lemma 8.3. Let Re zé =0, zé # 0 and Re Kj = 0. Then the matrix Mj(cé) has on-

ly one eigenvector norresponding to the eigenvalue Kj.
Proof: The operator le)(c') for ¢' = cé may be written in a form

(1)(

<

e = (2n1) TR (100 L'k’ z)) ol e

0 A 0
J

Let us denote by Qj(co) the operator from Q(Q(Kj)) to ¢ represented by the

above integral. Recall that L'(K',Lé) = zO'I + Ac' + Bigb is a linear regular

k-matrix. From the strict hyperbolicity we conclude that this matrix has only

one eigenvector corresponding to the eigenvalue k' = Kj- Let v be an eigen-

vector of Mj(cé). By the equality le)(x'w(x')) = le)(W(K'))Mj we obtain

Q§1><(Kv-K3

for any ¢£®(Q(K3)) an identity

Y¥(x')v) = 0. But then also Qj((('—Kj)W(K’)v) = 0. From (2.15) we get
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L'(Kj,Cé)Qj(@(K')) = AQj((Kj-K')w(K'))

Therefore Q! (¥(k')v)

Q! (¥(x'"))v 1is an eigenvector of L'(x',r!) corresponding

J J 0
to the eigenvalue k' = Kj. Let us note that since the columns of le)(w(x')) are
independent, so are the columns of QE(W(K')). Hence the vector v is unique,

and the lemma is proved.

(1)

Let us now investigate the projectors P.  '(z') in Q(cé) when z! = 0,

0

( P

1
J )(C')a J = 1,2,...,t,
analytic in Q(Cé), the columns of which are independent for any C'EQ(Cé) and
;l)(c') when z ' # 0.

(1)

b) For z' = 0 the conlumm of Xj

()

form a bvasis of Im P

(z') belong to Ker %(g) (where £ = g'sr)

and Xj cé) = Fl(l)Xj(g'), where the columns of Xj(cé) form a singular Jord-
an chain of length qgl) corresponding t. the ecigenvalue k' = Kj of the singular

K'-matrix L'(K’,Cé) = At Biéé.
(1)_ (1)

) There is a matrix valued function MB(C') of order qj xq.j analytic in

u(cb) such that the identity (8.17) is valid. The matrix Mj(cé) is a Jordan

cell with the eigenvalue Kj.

Proof: Using the factorization in (8.5) and taking into account the fact that

the matrix ('5214-C)—l depends analytically on k' in Q(«x

tor Pgl)(c') in (8.9) by an operator Cﬁl)

j), we replace the projec-
(z') : Q(Q(Kj)) — ¢™ given by

1

(8.18) le)(c')w = (oni)7} § F1<K>(sio1+c')' @(k')dx' .
It

J

(') has the same image as the projector P

For rz' # 0 the operator le) (l)(

g feh):
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If r = 0 but z' # 0, both le)(c') and Pgl)(c') ae analytic, and it follows
- ' (L) vy = (L), - .
as in the case z # 0 that Im Qj (z') = Im Pj (z'). We proceed as in lemma 3.L.

The operator in (8.18) is replaced by a new one, denoted by the same letter

(

(8.19) QJ

V(g = (2ni) ™ § Py 0D(at,8) (N3 (x " ,2 ") 780, Jolx")ax®
r‘l
J

The matrix Né(x',i') is given as in (3.28), where A',w' and s' should be replaced

by a',B8' and z' respectively and
1
o
Né(K',;é) = diag((K'—Kj) ,1,1,...,1) .

The first column of the matrix D{«',B8') is the singular root function ¢b(a',B') and
is proportional for r # 0 to the vector ¢b(a,8). According to (6.26)

F ()@, (as8) = &b(x,g) so that the first column of the matrix F,(x)D(a’',8') be-

longs to the space vo(g) = Ker %(g), where £ = g£'+r. If r = O, mo(a‘,B')
¢b(x',ig') and
' 1y = ' ' : \ &
F ()@y(a’,8") = F (1)@ (a’,B")€F (1)V KerP(0).

For z' = 0 it follows then from the diagonal form of Né(K‘,C') that

(

Im le)(g') < Ker 5(5). Let us define the matrix ¥(x') as ¥(A') in lemma 3.bL.

The matrix X(l)(c') is determined now by Xgl)(g') = 0(1)(c')(W(K‘)). For

; 5
' = ¢! we have
0 (L), vy = - V(o
xJ (co) = rl(1>xj(co),
where _q(l)
Kyet) = (zu1>‘l§ Qplxsigdian((x'=x!) T ,0,0,...0) ¥k )ax”

Ts

so that X%(gé), as  claimed in part b) of the lemma, is a singular Jordan

ctlivinnte oo At ARV S DG w4




chalin generated by the root function wo(K',iﬂé) at the point ¢¥' = k'. As in the
. 1) . .
d:f'rerential case qg / < {n-1)/2. According to assumption 1.2 and lemma 2.1

1) )
the columns of XH(Cé) and therefore of XS ’(cé) are independent. We shall choo.e

(1)
\l‘(

1
o

&

') sma)ll enough such that the columns o1 X

: ;') are 1ndependent for any

(1)

"En(cé). Since the image of Q(

[x

') in (8.1Y) coincide: with the one of P [z*)

o ) ( ‘
ror z2' # 0 and has dimension q}l , it follows that the columnc of X1l)(c') form
1
( )(
J .

{8.17) we proceed as in the case zé # 0. The Jordan form of the matrix Mi(g5')

.

i basis of Im Q ¢') for any C'€Q(§8>. To obtain the matrix Mgl)(c') and formu’ -

follows immediately from the definition of ¥(kx') and diagonal form of the matrix

St
N:)\K 2 G ).

0]
We are now able to bring the c-matrix T(«,z) to a block form. Tn additior *.

r:» already defined matrices XO(L), Xm(F) and Xgl)(g') we determine matrix

>

R

Xk(c), k =2,3,...,n, analytic in Q(LO)’ the colunns o which form a bacic of tie
cpace Im P (g). To the matrix Xk(c) corresponds a4 square matrix Mk{c) Aanalytic
e Q(QO) such that

;Y | \
IR0 N Y=
3.20) A (e)x M (o) + A ()X (0} = 0.

finee o F (ak+l)/(ak~1) is a simple rout, the matrix Xk(c) ie actually an

. v N .
cigenvector of the k-matrix L(x,z) and Mk<cn) = Ky We shall often consider the
matrices Xk(g) and Mkfc), K = 0,2,3,...,0,o, a5 functions of ' through the re-

lation in (8.2). Let us denote

(1) (1) (1) (1) (1) .
= 14 = 4 Y Y
XF]_ ()(l ,)(2 ’ >Ny s X}'] ( Fi s)\k a)‘a "y )
B.21) s
Roo= (KK ), X o= (LK) .




i

in a neighbourhood Q(Cé) with 2z = 0 we partition additionally

(5.22) X=4X(l),X(2>), where X(l) = (X X(l) (l))

(2) _ ¢ (@),
0°"F1

s KT (KyaXgae XX

eigenvalues Ky k =2,3,...,n, split up into two groups I and II, according

t . whether ]xkl <1 or lkk‘ > 1. In the case Re zé > 0 or zé = 0 we split in

‘e came way the eigenvalues Kj, J=1,2,...,t, according to whether Re KS <0
“He x{ > 0. Then the matrix X, is also partitioned as X, = (X, XX ). IF

»' = 0 we suppose the matrices XI and XII to be partitioned

D) L) _ (1) () . ‘

X, = \AI ,XI ) and XIl = (XII ’XII ). We ccnstruct also a block matrix Mo

wiich corresponds to XF and is partitioned according to XF with the similar

itations for the partial matrices. As usual, introduce the matrix

v

Caw . , . . -1 o
TAX _JAX ). The rows of the inverse matrix T are partiticned and denoted oo
I"F* 0 =
cooit they correspond to the columns ot ¥. Introducing the matrices BO and B1

¢ .n 7 L2) we rewrite the identities (8.12), (8.17) and (B.70) aq
c L{e,c)¥(c") = LN ARIRRE AN S A N

N c'€hn(c6) and ¢ is connerted with 'ty (8.0,

cetouy first investipate the mat vl oo X' and 7 T aN Y lr thaee cace nt # o0,

-l -1 ey ~1
et TRty = rT ALY ) Aand part it .oon 7 according to T
e MU0 a) The matrix Xeo'l Lo rvertitile in u{cf} and U DL aneaytic gn she!
t 1 Moreover, the matrices YT—13£') - (T—I{i'>‘i‘ are analytie inoslo 0y,
.. 0 ' r
Crae dACL row o (;-i‘cf]f(}b Loonohiene
v veohet KU lgvo= 00 We sappone crat the comporent. 0 fhe vestor voare part (-
cedand Adenoted acearding to e omat e L Teer car reeal et e prcfectors
s b= Uy, And f“',vl’ff,' oyt Ve eyt g are maptan Iy rthoponn] and

<
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analytic in Q(Cé) and vanish on the spaces Im QO(;) and Im Q_(t). Theretfore we

vet immediately that v, = 0 and XO(CO)VO +Xw(C0)Vm = 0, According to part c)

( o\ " {
o1 lemma 8.2 the columns of (XO(CO), X;l>(co)) form a basis of Ker A < Ker ﬁ(C), i
(2) . “
and the columns of X (LO) are independent of Ker F(0). Hence v = 0, and the
matrix X(cb) is invertible. We can choose Q(Cé) small enough so that X(g*) iz
invertible for any ;'69(;(')). Let us rix any « with [«| = 1. From ctability of
tne Cauchy problem we have for any C'GQR(Cé) an estimate
.. 5 2 -1,-1 f-1 K

8.22) c X(e)(By(g 4B (01)) 7T (') = gL (e,0) . s T2

i . n n . . 1
Vince X(r') is invertible and El(g') + « El(g') is tounded, it follows

l(C')J < T;%ﬁiu The matrix T_l(g') has a singu-

pat 1T (c')isr}f——and T
AN

fupity of the type lT(c')l-l. Since the matrix T(g') i: invertible for r # 0
wrnd [T(z')] =0 if r = 0, the matrix T_l(c') may be writtern an a fraction ]
Tty = W(g')/rk, where the matrix ¥(g') is analytic in ©(g!). If the compon-
o' in gt o= (&',z',r)€np(cé) v fixed and Re z' ~ -, the matrix 7 (')
1 4

arded as ro» O, and the atove tfraction o reducible, Therefore this fraction

reducible for any g'Ex(cv\, and 7T {r') Dvoanalytic oan izt
| B

]

et r = 0, A in lemma 3.6 we have Im T (r') = Fer T(z'). et o« in (R.23)

voxed and different from all the eipenvalues of P‘(c')+rP.(c'3 tor ull

|
;

et If vEKer T(r'), then ﬁ(K,QW)X(&')(%”(c')+rﬁ(g'))_Iv = ¢, Deneting
frt+ ﬁ‘(c'))_;v we ottain that Xin'h € Ker i(w,c( . We ol pove the ,
rents of Yhe vestors poand v oo eyt itjoned and dencted o gecording to the
Gt ek L The matrix Lo ,n b L0 iramiiar 0 arder e ow s ot liar oot fuynet ion
. R ?,'V)w"l.“‘. Wl e e gt A e priee Vo = oEer A AC inolem-
o ;1L how Shat e gerne o F T oe 0 ) Tr spanned ty the vector @ b 0




(1)

Since the columns of &O(co), X.7'(z.)) form a basis of Ker X and the remaining

. . ® 0 v o (2)
columns of X{g') are independent of Ker A, it follows that uFl(c ) = u, (z')=0
and

(1) (1) v
] ]
Xoleghugle ) + x " (e du, " (07) » ¢ (k,0).

. "\ "
Jince the vectors ¢b(K,O) for different « span the space Ker A , we may assume

(1)

oo

that the last component of u (¢') is different from zero., The components

v (') and vil)(z') are given by vy, (g') = («I-M (2"))ug (¢') = 0 and
V;D)(c') = (I-KMLQ)(CO))HLQ)(C') = 0. Therefore (%—1(5'))p1 - (%-1(C,))i2)=0

wnd the matrices (175(ct)) (17 (g ()
v e = (I-KMil)(g

are analytic in n(cé). Since

(1),

') and the matrix M

(1
)\L'§ te non-zero. Taking

we obtain finally that the last row of the matrix (T—L(gg))il)

CO) is a nilpotent Jordan

.1, we conclude that the last component or v

o

S 4 ig

1
E
)

- n~zero, and the lemma is completely proved.

. ~1 .
Let us now investigate the matrices X(g') and T “(¢') in the case zy = 0.
tomma 8.6. a) The matrix X(z') is non-singular for z' # O.

!
b) For g' = (&',O,r)€w(cé) the columns of X\lj(c') belong to the space
y ' (1),
Yep ﬁ(&), where § = E'r, and the columns of (Xo(c'),xgl’kc'),xl J(c')) as well
- (] (l) 1 <l) Y AN =
11 the columns of (XO(C )’XII (r, ),Xqo (E')) form a tusic of Ker F(g).
The colunm s of X<£)(C') are independent of ¥Wer P(E). Hence the matrix

)
;Xq(q‘),XI(c')) is of full rank n.

iroof: Part a) of the lemma follows ar in lemma B8.9.

! | HLoTe

@

. (1)
According to part b) of lemmac 8.0 and 8.5 the columus of ¥ 7' (') belong
“or z' = 0 to the space Ker P(£). Furthermore, the columng of
. . | . . .
(l)(Cé)) form a vasic of Ker A and XS )(LL) = J,(X)A; {z"), where Lhe

‘K_{;%),X

0% AN < MBS e . —adtanaa. 2L

AW L aMhamaa. A2 L ame
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i(cé),...,X}fﬁé)) consists of singular Jordan chains of the

'-matrix L'(K',Cé) = Ax' + Bigé. Let us partition the matrix X/

RN 1 ' =
matrix XFl(CO) (X

1(;6) according

- s (l) ] ~ t ] = 1 1 (] ' I N > -
1o the matrix XFl (EO) as XFl(cO) = (XI(QO),XI](CO)). Then the {n-1)/2 column:

ot K'(co) together with the vector w”(l,O)EKer A form a basis of the (n+l1)/2

I
. . . r m o . . N [ ] (l) LA <l) [ BN .
drmensional space \O. herefore the columns of (X . {¢'), LI (go,, Xm (cu), o

)

. A o
n basis of the space Ker P(Q) = Ker A + Fl(l)vo' From the consideration of con-

tinuity the last statement remains true if gé is replaced by any

ot o= (E',O,r)EQ(Cé) and Ker P(0) by Ker %(E), where the neighbourhood Q(g!) is

0]

sufficiently small. In the same way one considers the matrix

SV (1), , (1)
(olety, X7 (e, X7 (et 1
X (1) (2) 2) .
The matrices M. '(g!') = I, M. “'(¢’) and M "'(r') are in Jordan form and
I 0 >R 0 0
. (1) (2} A2, ;
vherefore the columns of (X] (Q%J, XF \L%),X) (g))) form a Jordan sequence of
1 9] ‘ vl ks -
L - TSI 1D PR ] v .
L k-matrix L(K,Cn). fhe columns of X (] are crlerendent of
P oy N v - A ‘ . . \
tnguens Kee A o7 L v=motrix ﬁ(x,tp;. Chvioucsly e ane o
-r -y . . iorr Y T
 columns Ak(c&) = AP(Q0> is  independent of Yer A, and ascordins o
~ o~ o 1'<?‘/ \ - .
vart. ¢) of lemma 3.2 the columns of e cot are o indoyendorn
(W]
2 e the above eligenspace. Ther i above Jerdap

sequence 15 regular ana hence, according Lo lemma 7.2, the vectors of the

‘ 2 2
s uence are independent of Ker K. Hence the columns of X('>(c6) = (X; )(L6),
L) . (L), Vo 3
L (C%)) are independent of the space Sp X, (co) + Ker A = Ker P(0). Then pnrt
R (2) n i .
of the lemma follows from continuity of X (') and P'(£) @5 functions of C'.
!

"erra 4.7 a) The matrix T—l(c') = rz'T—l(c') and alcoe the watrices
n'fT_L(L'))éi) and (T—l(c')\(“) are analvtic in 9(@6)-

R ad

A Ay iy
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b) The last row of the matrix (%-1(5'0))i1) is non-zero.
Proof: Since the matrix X(Qé) is singular, the proof used in lemma 8.5 for
the analyticity of %—l(g') is now unacceptable. Let us integrate the matrix

X(c')(%O(g')+K%l(c'))—lT-l(c') for C'EQR(C') around the urnit circle |x| = 1.

0
Since the integral (% (c') + K% (C‘))—ldK =1 &0 where the unit
> 0 1 n {m-1)n’ o g
IK}=1
matrix corresponds to the blocks M., and M_ and the matrix O to M and
0 I {(m-1)n 17

M_, we get from (8.23) an estimate

ye[(rh S

v -
T 0° N P

where the variable ' is omitted. The independence of the columns of X ,¥,,

1(X.,X

o]

implies that
-1, - K
i{T l)ou > W{T l)ﬂ S ToT

Let us fix in (8.23) a value of « bounded away from « = | and with |x| = . TMhen

we get also
I (x )

and finally

)[(KI—MI

_ 1 ‘ =
II’Xw 1 $(1—KMw> (T >1I’ S < TET?I

K

(8.24) I T‘l(c') I« T

et us note that the matrix T(¢') is non-singular for L'EQ(L&), when z'r # 0.

Therefore the zeros of the function |T(z')| are also zeros of the function z'r,

and using, for example, the Nullstellensatz (see [9]) one can show that

k., k.,
i) = (27 lr “@(c'), where the function @{r') is analytic in Q(Lé) and
w(cé) # 0. Then the matrix-function T_l(c') has sinsgularity of the type
—kl -k,
lz") r . Let usg take ' = (£',2',r) € QR(Cé) with Re 2' -~ 0 and fix

B e e
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A~

£' and z'. Representing an arbitrary element of T_l(g') as a fraction

ky k
pio )/ ((2") lr 2), where ¥(r') is analytic in Q(cé), we obtain from (8.2L) an
estimate T
4 Ka
(8.25) fw(z")/((2*) " | ¢« Kelrz'[/(]2]-1) < K .

k
Therefore ¢(g') may be reduced by r 2 for the above ' and, therefore, for any

;‘EQ(;&). Similarly, let us fix in ¢'€Q_(z'!) the components £' and r and let

R 70
the variable z' be real and positive. Then from {8.25) follows that Y(z') may
k2 )
re reduced by (z') for any g‘€Q(cO) and therefore the matrix T ~(z') is
analytic in Q(Cé)- Let us now prove that (T_l(c')éi) =0 for r = 0 and :
.
L)) 2 g ie vzt = 0. The equality T(c')TH(

£') = rz'l implies that 4

b=

A
T ™M

{(z') @ Ker T(rz') for rz' = 0. Let z' # 0, r = 0 and, therefore, £ = ¢

(1) (2},
Fl )

o
According to part a) of lemma 8.6 the columns of (X

rendent of the columns of (XO(CO), Xil)(

(g'),X £'}) are ind.- ]

A
co)), which form the tasis of Ker A.

Taking vEKer T(z') and proceeding as in the proof of part b) of lemma 8.5 we

;i) = v(2) = 0 and therefore (%_l(c'))<l) = (%—l(ﬁ'))(z)

Fl = 0.

ierive that v

2

‘et now z' = 0 and r # 0. According to lemma 8.6 the columns of X( )(C') are
: N

‘niiependent of the singular eigenspace Ker ?(&) = vo(g) of the singular

v-matrix i((,c), where ¢ = (£'+r,1). Taking v€Ker T(z') and following the ana-

—_ 3
iyticity proof of (T l(g))<2) in lemma 7.6, we conclude that v(*} = 0 and there-~
a_ 2 A_
rore (T l(C'))( ) o 0. The matrix (T l(c’))(e) is therercre divisibkle by rz'

;i) by r, so that part a) of the lemma is proved.
]

In order to prove part b) of our lemma we shall construct a vector func-

and (T H(Z))

vion v(z') analytic in Q{¢!) such that the last component of
0

R

.. isaieitieluibsainiiior s v
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(1)

v (gé) is non-zero and T(z')v(g') = O(rz'). Then multiplying the last equal-

o

Y i)

ity on the left by T ~(z') we obtain that V(Cé) € Tm T J)-let us fix « dif-

Terent from all the eigenvalues of go(c‘) + Kﬁl{g’) for Aany c'€u(cé). The vector

n
&O(K,O) € Ker A may be represented as a linear combination

By06,0) = xeymgley) + X el Mo,

As in the proof of part b) of lemma 8.5, we may assume that the last component

of uil)(qé) is non-zero. Let us define a vector u(cé)ECmn by adding to uo(cé)
and uil)(cé) zeros in the remaining components. Then for ' = (E',zgr)EQ(gé)

and the corresponding ¢ = (£,z), we arrive at
2V}
0y(k,8) ~ x(eulel) = raolz'),

where A@(z') is analytic in 2(z!) and for z' = 0, AMp(r')€EKer %(g). Since tle
0

X(l) (1)(

columns of (Xo(c‘), 1 (£'),x7"(¢")) form for ¢' = (£',0,r) a basis of

Ker %(5), there exists a vector function su(z') analytic in “\gé) such that

(1)

Au(2)(t,') = 0 and Ap(z') - X ') = 0(z").

Therefore defining u(g') = u(cé) + raul(z') we obtain
By(<58) = X(e hule') = 0lra")

P ]y v . .
Since L(K,c)wO(K,E) = 0(z-1) = O(rz'), we obtain for the vector-function

vin') = (B (c")+E (c')ulr') an estimate

g v(g') = Dle,2)X(z")u(g') = ofrz').

e T oot 4 A < JAMBESES o .
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To accomplish the proof we should note that the matrix I—KMil)(

(1)

o

Lb) is of upper

() = (1M g0))-
(1),

0o

triangular form with the unit main diagonal. Since v

(1) (1)

o o

and, thus, it is non-zero. Q.E.D.

Cé)’ the last component oF v (Cé) is equal to the last one of u cé)

(1)

8.2. Construction of the Kreiss symmetrizer for the matrix M, '(g') = }f;Mj(C')

J —
in the case Rexj = Q.
Let Re zé =0, zé # 0 and suppose that the matrix Mj(cé) 2as the eigenval-
ue K3 with Re K3 = 0. According to lemma 8.3 we may assume that Mj(cé) is a

Jordan cell of the order qél)

(1)

qj . Following Gustafsson et al [3] we consider a matrix

. For ease of notation we shall write g instead of

(8.26) &é(c') = -(i/r)en Mgl)(c’) = ~(i/r)gnlI + rM%(L')).

Obviously the matrix M}(;') is analytic in Q(¢') and Mé(c') = ~1M3(g‘\

0 0 0’
is a Jordan cell with the real eigenvalue K3 = -ik!. The matrix Xgl)

J

may be chosen in such a way that Mj(c') has a form

(g")

ep 10 - 0)
A - e - 0 1 0
(8.27) M(gr) = kel e | 1
. ... 1
e, 0 0

where e = ek(c'), k = 0,1,...,9-1, depend analytically ¢' and vanish at the

audeaa Ot o
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point ¢'= ¢'. Let C'GQR(Cé). Denote by p the number of the eigenvalues x of the
)

matrix Mgl

[«| =1 for ¢'€qfz)), it follows that the number p is independent of ¢'. It is

0
(

t') with |k| < 1. Since the k~matrix L(k,Z') has no eigenvalues with

easy to show that the mapping k > «' = =(i/r) #n « transforms the eigenvalues

of Mél)(g’) into the eigenvalues of Mj(c’) so that for « with || < 1 we have

Im x' > 0 and vice versa. Thus, the matrix Ms(c') has p eigenvalues in the

halfplane Im «' > O and g-p in the half plane Im k' < 0. Let us partition

the matrix Xgl)(;') as

(1) (1) (1)
8.28 X, = (X, ,X .
( ) 3 ( 1,5’ II,J)
.o (1) . . (1) (1)
where the matrix XI 3 consists of the first p columns of Xj and XII 3 of the
? ]

(1)

remaining q-p ones. If VJ is a gq-dimensional column-vector, we shall similarly

partition it as

(1) (1) (1)
{ = [
(8.29) vJ (VI,j’VII,j) .
where ' 1is now the transposition symbol. As in (3.16) we have a matrix
\
Ugl)(c’) continuous at the point cé such thatlﬁg(gé) = T and
Kjl Y 0 0 (
0 K Y 0 N N
1 -1 1 1 2 n 12
(8.30) (uiP e wiHeulVien - : ISR
Y 0 Nyoo
0 Jaq
= i ' ')t irs i s satis
Here y = ir, and for ¢ €QR(CO) he first p eigenvalue Kjl,Kj?, ,KJp satisfy

[«. | <1 and remaining q-p ones have |k, | » 1, so that the spectra of the

Jk Jk
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matrices lel and N322 lie correspondingly inside and outside the unit circle
IKl = 1.

The main result of this subsection is
(1)

3 (z') depending smoothly on

Theorem 8.1. There exists a Hermitian matrix R

c'EQ(cé) and satisfying

8.31) (P R el s oy 2 W 42 por any crenty)

(1)

(8.32) (Mgl)(c'))*Rgl)(c‘)M(l)(c')-Rj

1 - t 1
] (') 2 6({z|{-1)1 for any ¢ € (cf)
where § and ¢ are positive constants and ¢ may be chosen arbitrarily small.

We shall use the methods of Kreiss in [2] in order to construct the above

3(;'), so that in addition to (8.31) the estimate

symmetrizer for the matrix iM

'8.33) re(ir (M (e (00 5 sclzldy 1

holds for any c'GQR(cé). Then as in [3] one obtains for the matrix Mgl)(c') =

ﬂxp(ir&j(c')) the estimate (8.32). Unfortunately the coefficients ek(g') in
(8.27) do not satisfy the condition of the Ralstors note [8). For example,

ek(c') are not real for |zl = 1., The following lemma provides, however, the
necessary estimates for the imaginary part of ek(c‘).

(cé) and positive constants K and 6

R
such that the estimates

(8.34) |m e (2] ¢ K|Im eq(c*)], k= 1,...,9-1
(8.35) [Im eO(L')I 2 6(-15-}—"-L + r3> > 51&%:&

1 1
hold for any ¢ EQR(QO).
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Proof: We shall not take advantage of the specific form of our difference

approximation. What will be essential in our proof is the dissipativity of
the difference scheme.

For any complex r consider a mapping
(8.36) ' = @l ,r) = {explix'r)-1)/r .

The function @(k',r) depends analytically on «' and r (including r = 0)

~

and the mapping x' + @{k',r) is one-to-one for bounded «x' and sufficiently

small r. Since Mj(g') = w(Mj(c'),r), the mapping in (8.36) transforms the

roots of the equation le(C')—K'Il 0 into the roots of the equation

|M3(C')—K'I‘ = 0. Denote L'(x',z') = L'(@(x',r),z'). Then the mapping in

(8.36) provides a one-to-one correspondence between the roots of the

equations [L'(x',z')})| = 0 and |L'(k',z')| = 0. Si.ce the equations

lMg(C')—K'Il =0 and |L'(«',z')| = 0 are equivalent in Q(Kj), it follows

0 are equivalent in a

~

that the equations |M'(z')-x'I| = 0 and |L'(x',z")]|
K

neighbourhood §i{k!) of the point The matrix L'(x',z') is connected with

“j

the amplification matrix G in (5.23

1
I
) and is given by

L'(k',z") = exp(ic'r)(z2'I-G'"(x',£",r))
where

G (' ,E ) = (G(x"or £t er)-T)/r

(the factor exp(ik'r) = « is due to the fact that the original difference
operator L in (5.2) was multiplied later in (5.21)} by the shift operator Ex).
The consistency of the difference approximation implies that ’

~

G'(x',£',0) = —i(Ac'"+BL') .
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Since Kj is real and !KSI + !eé[ # 0, the matrix Ax) + BEj has distinct eigen-
values and therefore the matrix G'(k',£',r) 1is diagonalizable for any

~

(c',6") € alx})xa(cy):

')’

G'(k',E',r) v diag(g],83,--- 18]

~ ~

where gé = gi(K‘,E',r), k =1,2,...,n, depends analytically on «', £' and r.

In our characteristic case we may assume that gi(x‘,g',o) = 0 and therefore

gi(m',g',r) = O(r). Since zé # 0, the equation |L'(x',z')] = 0 for c’EQ(cé)

is equivalent to the following n-1 equations

~

(8.37) zug;{u',a',w =0, k=2,3,...,n

Since the values g#Kj,Eé,O), 2 ¢ k £ n, are distinct, it follows that k' = Kj

is a root of only one equation of the type {8.37), namely for such k, 2 € k ¢ n,

<

which satisfies g%xj,gé,o) = zb. We shall omit theindex k in this specific

function

g'(K,€'9r) = g}‘((K’E',r)
and revrite the corresponding equation (8.37) as
z' - g'(x,&',r) = 0.

let us denote by g(k,£',r) = l+rg'(«x,£',r) the corresponding eigenvalue of the
amplification matrix G(x'+r,£'sr). Then the last equation may be written in the

following equivalent form

(8.38) fle',e') = ﬁ?rz _an g(r?%,,r) =0

(where 7z = l+rz') .,

S .

——




———
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The function f{x',f') is analytic in Q(Kj)xﬂ(cé). For c‘€n(c6) the characteristic

equation IM&(;')—&'I‘ = 0 is equivalent in Q(Ks) to equation (8.38). Since

~ -~ ~ ~ ~ ~ —1
T-ME) ] = (kD) Yee () e (k')A e (g)

l JED] = () e ) (20 (k' x)) ole')s

it follows that iek(;'), k=0,l,..‘,q—1,qre coefficients of the Weierstrass poly-
nomial corresponding to the function f(x',r'). Define a function

——

Flet,g') = £(x',2'),

where — is a symbol of complex conjugation. The function f{x',z') is analytic

~

in «' but not in ¢'. For c'€QR(cé) we have

(8.39)  f(x',z")=F(x',z") = [2n(]2])-tn(g(x' ,E' ,r) -glx’,E",r) )/ (ir) .

According to estimate (5.27) our difference scheme is dissipative of order L.

Therefore for real «k',£' and r there is an estimate
Al A: [] A| 1 - Av ] 2 . h
(8h0/ g<‘< »6 ar)’g(‘( .3 ,I‘) = Ig(’( »E ,I')l § 1-6r

provided [k'{ + {£'| is bounded away from zero. Consider an analytic function

of the complex variables «',£' and r

~

h(e',€0,r) = g(x',E0,r) gl ,£',r)

and let us expand it in a power series according to r

h{k',6',r) = 1 + Y hi(;',t:')r
i=1

i=

i

—— e PN PR




Let ;',E‘ and r be real. Then h(;',g',r) = |g(;',€',r)lg and it follows from
(8.40) that the first non-zero coefficient hi(;',g') should have an even index
i =2m ¢ 4 and should be negative. Actually m = 2, since otherwise the scheme
would be dissipative of order less than L. Therefore

!
hi(k',g',r) = 1 + O(r‘)

~

Kj) be complex and g'€Q_(r'), i.e.

also for complex k',£' and r. Let now k'€Q( "

€' and r are real. Then

(8.41) gk £ r) gkt ,E ) = hix',E',r) = 140(r")
and —_—
(8.42) 2 (et et r)mlxt et r)) = O(r")

k'

it follows now from (8.39), (8.41) and (8.4k2) that

(8.43) [flc',g") = flx',z")| < K(lz$:lv+ r3)
and R .
(8.44) IBI‘(K:,L') _ af(K',L)' < Kr3.
k' 3k’
Denote £ (z') = f(;j,c'). Then Inm £,(c') = (f<;3,c'>-?x£3,g'>)/<ei> and using
{B8.39) and estimate (8.40) for real ;’ = ;3 we obtain
(8.45) ltm £ (c")] = 5<U——Zr“1 ey

Therefore one can replace the right hand sides of estimates (8.h3) and (8.4L)
by X|Im fo(c')|. Thus, the function f(;',c') satisfies the conditions of lemma
8.9 proven below., The correspondence with the notations of the lemma is as
follows:

and D = Q(r')-g'.

= K - :'—.
Zp T KKy s W E L 207750

[
1 . 0

«




Since the functions ey (c }, k=0 J1,...,49-1, 8&re coefficienty of the Welerstrant

polynomlal corresponding to f\( Lo, we arrive according to lemma 8.9 and esti~

mate (8.45) at the required estimales (8.3U4) and (8,35). Our proof iv valid for
any dissipative difference apﬂroximation. Tf the order of dissipativity ig m
instead of b, one should replace r2 in (8.35) by rd'l

1t follows from (8.35) that im eD(c’) {s of constant sign for ;'Eﬂﬂicé).
As in [2] (lemma 2. 7) we shall show that the number o of the eigenvalues of

M (Q ) in the halfplane Im ' > 0 is given by rormuia (3.14). Since this number
o 15 independent of ¢ EQ (L }, we shall take ' = (Eé,z‘,O) with Im z' = Im zb and

re z' » O, Such point does not belong to 2 (LO), but is a 1imit point of a seb

{(Eb,z',r)enp(cé),vo}. Then |Im eq(c')] 3 Siez’ and e (') = olfrt-zyl) =

Olre z')Y, ¥ 7 O,\,...,q—l. Therefore the ¢irenvajues g' of Lue matrix M%(Q‘\
may be written in a form

1) 1
() de(1+0(Re 2") fay

and  formula (3.1h) follows easily.
Using estimates (8.34) and (8.35) and formula (3.1k) we are able to construct
the reguired symmetrizer Rgl)(g') for the matrix MJ(L }. Using the notations of

¥reiss in [21, the matrix iME(L') is represented as

~ ~

iMB(C') = ixg-l + iC + iE(g') + n{z'), where
o1 - - - G Re e 0. . .40
q-1
> 0 Y - , 0O .
I P B E(g') = ,
. . . . 1
0 .. , 0 Re o 0

PR VP ST S
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(1)
Then H:lj(c'§ =

v

'y €B and

(D+B)-iF,
n'F defined in i}
So theorem 8.1 is proved
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M o=

SRR

.,0_ .. Since o.(0) = 0 it follows that [Im (o
q-1 J

1005009
§ 1tm £ {(w)|, where 6, is arbitrarily small if one sets ¢, small enough. Let
1 0 1 2

us write the integral expression for im oq(w)

q
, 2
In oy (w) = = (é)r 23 oo (For)az, + &r —; : (f'-f')dzj>.

£-f
21" (2),%) 2
The functions — and ——— are continuous on FxA& and, hence,
f(zl)w)f(zlaw) f(Zl,w)

the difference of their values at the points (zl,w) and (zJ,O) may be bounded

by arbitrarily small constant if one chooses €5 in a corresponding way. Let us

q
Z
note that :*—l——- is analytic function of Zq and therefore
£(z,,0)
(2, .
§ - 1 (f'(zl,v) - ?'(zl,u»)dzl =0
r f(zl,O)

Similarly,

A, 01 ¢,

z) f (bl,O) ) ., |

- = - - relz ),
f(zl,O)-f(zl,O) f](0,0) 1 -
Bq?(zl,o)
wnere £ (0,0) = ———| _ is non-zero and qlz,) iu analytic function.
q ) 2,4 7. =0 1
1! 9z 1
1
THen zq-f'(z 0) —qelm £ (w)
1 1 1 = 0
—H _ \f(Zl,W)—f(Z] ,W))d)‘. = —'__ﬁ‘-‘—
T f(zl,())f(zl,()) fq(r),o)
qow, using estimates (8.46) and (B.LT), we obtain for cufficiently small €,
lim U‘(w)[ drmor fw)d

L - LY S A tmpsr e P oaiupee e iibienk In
s G =8t . aa
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and therefore

| Tm eo(w)l : élim fo(w)|

for some constant § independent or wEDﬂA;.

8.3. Proof of theorems 5.1-5.3 in the neighbourhood Q(g!).
=t 0

We consider first the case zé # 0. The operator P in estimate (6.9) is now

Y
defined as P = A = diag(A,A,...,A). Theorem 5.3 is formulated now in a follow-

ingr form:
Sufficiency: If (UKC) is satisfied in u(cé) and dim g(O,l)Ker i= 1, estimate

(0.9) holds in Q(;é) with lzol = 1.
1f estimate (6.9) holds in Q(Lé) with {:”{ = T+o Ax, where o, 2 0,

B

Hecessity:

vhen (UKC) i satisfied in £(z)) and dim €(0,1) Ker A= 1.

"

Thecorem 5.2 is replaced by stronger theorem 5.3 and theorem 5.1 1z formu-
lated lccally by means of estimate ((¢.0) with [zoj = lta.ax and x 0.
Let us consider the more compilicated case Re;g:“ tﬂ& # ). doing the
-1
= 0! Vowe arrive 10 oin subsec-

variables v(x) = X—I(Q‘)u(x) and Gix) = T ot iE(x]
tion T.2 at equations (7.45). The columne o8 the matrix ¥ (0" as well an

the components of the vectors vFl(xj and }FL(X) are pact ticred in oo natural
JLodneluded in Che sroup 1, equation

way when Re v!| = 0. Since the column XD ivono
4

f7.45) (C) should be rewritten as

‘ ‘u

(85100 E(C)X\(L‘)VO(O)+§(c)XT(L )VL(O)+S(C)XII(§‘)VI,(O)+ﬁ(L)X\({')v (0) =y .

The symmetrizer R{¢') is constructed as a block diagonal matrix, where thr

partial blocks are denoted according to the partition of the matrix X(z').

We diefine RO(L') = ~ori, where ¢ s o4 smac. pouitive conotant, and

. (1) 2 . . - (I .
Pty = R S )‘B}-‘.( (') = rigi. [t Re v! = 0, Lhe blocks h(} oY are aefined
A x> @ N .
, . Y ey : (e, , . '
w5 oin subsection H.2.0 I Re v, - 0, then B (') = and for Be ! < U,
J J dJ
) ] . o
LN = a1 The matrines FP(L'), k= 2,%,...,n, are defined similariy accord-
et Lo whetherp !r_] > 1 or ]ry§ < 1. Le un notethat for Re w% #F 0 it follows
Y. . .
f
st Fe H;l)fﬁ']Mffﬁ') ;8T and therefore

]

o
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(Mgl)(c'))*ﬁilv(g')Mgl)(c')—R(l)(c') =
(1) (1)

Le")(I+rMi(" ))-R. " (g") 2 &r T

J < N

= <I+FM%(Q'))*H

for r > 0 sufficiently small. Since r 3 lz-1{ 2 [z| - 1, estimate (8.32) holds
for any J = 1,2,...,t. 350 the symmetrizers F(C') and Rw(g') satisfy for any
Q'EGR(cb) the conditions

(8.52) M;(c‘)RF(C')MF(Q')—RF(L')aé(lzl—l)I, Rw(C')—M:(C')Rw(c')Nw(C')ZG(lz!-l)I .

*
, v R\(c')v z-crlvolg, vam(c')vmzrlvw]

0

Applying to equations (7.45) the generalized energy method as in subsection 7.2

we arrive at an estimate

- » 2 . 2 2 2 2 2 B
(5.5by sz [-Lynvi® + L‘V11<O)’ + ]vi )(O)f + rfvil)(o)] —-cf VT(O)’ +r,vo(0)l?}ﬂx
R(c'Jc i’

. MR{Z' G

[ S B
.. -1 -~ S (2) - :
Sinee T (c'))o, r{T l(Q')):U , {7 \c'));g/ and (T l(;‘))F1 are analytic
in Q(Cé), it follows that

2 2
I R{c')GH™ < KIFE™.

Analagously to lemma 7.7 we have

lemma 8.10. The condition (UKC) in the neighbourhood (') i equivalent to

)(Xo(cb), X£(§6>) #0.

A\l
N 0
the condition det S(co
Proof:  Let us construct a block diagonal matrix UFI(C') with partial blocks de-

noted as in the matrix M_ (g'). ¥For k = 2,3,...,n and J = 1,7,...,t with

1




- l)r. -

(1)

Re Kj # 0 we set U and Uj

matrix Ugl)

diag(UF(c’),Um),where U

as unit matrices, and for Re K; = 0 the

k

(') is defined as in (8.30).7hen U(g') = diag(UO,UFl(c'),Um) =
and U_ are unite matrices of corresponding order. The

0
matrix U(z') depends continuously on Z' at the point g4 with the velue U(C6)=I

and UFl(C') provides a similarity transformation

N (') wo (g")
-1, , o 1
UFl(c )MFl(c )UFl(c ) = ] . (o)

For C'EQR(Cé) the spectra of the matrices N__(z') and N_.(¢') lie correspond~

11 22
ingly inside and outside the unit circle lKl = 1. Considering the homogeneous

equations {7.45) (A), (B) for F = 0 and performing a transformation v = U{g')y,
where the components of the vector y are partitioned according to v, we arrive

at the equations

(8.55) (Ex -

——
(&)
=
ny
N

(=M E
o X

Hence for ;‘EQR(Lé) the general homogeneous solution of eguations (8.55) in

QP(x) is given by

v (x )=y (xv) =0 for v » 0, yO(xV) =0 forvzlandy (x)=N

"7y 11

and the corresponding homogenecus solution of equation (7.LL) (A) is
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(8.56) O(x52") = (0 (x50 )50 e 0, (x50 )y (0),y(0)) =
X(£ V(") (g (x) sy (x),0)"

The nm-<dimensional vectors ¢5(O,;'), J = 1,2,...,n, are continuous functions
of ' at the point Cé‘ Since the matrix X(¢') is non-singular (we, actually,
use only the independence of columns Xo(cé),XI(cé)), it follows that the above
vectors qﬁ
the definition of the matrix N(£,z) in (5.30). So the matrix N(&,z) = N(g') de-
. \y

perds continuously on ' at the point Cé and N(Cé) = S(CO)(XO(Cé),XI(Cé))- The
condition (UKC) obviously implies that det N(cé) # 0. The converse is also

(0,z') are independent for any c'€Q(cé) and, thus, may be used for

true if one takes Q(cé) small enough.
Let uu return to the boundary condition (8.:1). If (UKC) is fulfilled,we
have an estimate

(8.57) bv

n %)
Suppose that in addition dim S(z.) Ker A = 1. For r = 0 the columns of

)

(1)(

(XO(Q'),Xil)(C')) span the space Ker X and hence the columns of %(LO)Xm L)

depend linearly on %(CO)XO(Q') # 0. Then for any C'€Q(Cé) there is an estimate

+ v 20 ()

l2
w

v (0)1% < K(lv;;(0)] %+ v P eont? + 1el®)

and therefore

(8.58) IVI(O)I2 + r|v0(0)|2 < K(|V11(0)12+|VL2)(O)l2 + r|vil>(0)|2 + [EIE).

Choosing the constant ¢ in (8.5L4) to be small enough, one derives from
(8.54) and (8.58):

-
o

Fl(o)‘2+lvi2)(o)12+rlvo(o)l?+r\vil)(0)IQ)Ax;K(&ﬁth-+

o]
“rx) .
%)

5(12]-1)1viP+(|v

28

[N \ L e TR A, . -
w" < "
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. 2
Since uun2 = anu2 < Kjvy  and KXO(c'\, kxil)(c') = 0(r), we get the required

estimate for theorem 5.3:

2 Ly 2 “F 2 2
(8.59) (lz]-1)pup” + [Au(0)|“ax < K(*‘f—z—h+ le|“ax)

If only (UKC) is satisfied, it follows from (8.54) and (8.57) that

17

(8.60) (lz]-1) i + |v(0)|%ax < Kl + lgl%ax + v (0)]%ax)
The value of vil)(O) is given by
(1) mel (1) - (1)

v 7 '(0) = Mg NVt (E'))m F(x_ )
v=0 v

since Mil)(c') is a nilpotent Jordan cell of the order m-1. Therefore
K|F. | KI|F_| m-1

[P 0)] « 2 < oy s where (517 = I et )17

3 \zok =1 + QOAX with a, > 0, it follows for any |z| > IZOI that

AX K

N 2]~z ?
(]z]-1) 0
and we arrive at the estimate

2 2
NE G +F |© ,
(8.61) (lzl-lzg ) Iat® + Ju(0)|ax < K 5y el%ax)

Z-ZO

which is obviously stronger than (6.8).
It remains only to prove the necessity part of theorem 5.3. Suppose that
\,
is i i i ' i.e. t 5 { ! ! = 0. e
(UKC) is not satisfied in Q(co), e. de >(QO)()O(QO), XI(CO)) 0. There

oxists a non-zero vector (yO(O),yI(O))' such that

LN - \ T e o i et

;éﬁ1.‘..“...........‘.‘&—‘¢_‘J‘.
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Sgg) (Xo(e 8y (0) + X (gd)y (0)) = 0.

Using the vector (yO(O), yI(O)) we define by (8.56) a homogeneous soclution
u(x) = @(x,z') of equation (7.44) (A). Then the vector g = g(z') in (7.Lh4) depends

continuously on ' when ' - cé and g(;é) = 0. BEstimate (6.9) implies that

| Ax(2u(e") (y(0),y,(0),0) 7| < Kle(g")|?

and hence XXI(cé)yI(O) = 0. Since the columns of Xl(Lé) are independent of the

" . n
space Ker A , it follows that yI(O) = 0. Therefore yO(O) # 0 and S(CO)XO(Lé) = 0.
Since & and X, depend analytically on ¢, it follows that %(C)XO(C')YQ(O> = (")

0(r) and ectimate (6.9) implies that

Kiul® kel oG
Ax z|-lz zl=2,

IyO(O)lg < Klu(0)|° <

Ficing z' = zé + € with small positive € and defining z = 1 + rz' we obtain that
|z}-1 2 re. If r and Ax tend to zero in such a way that (z]—lzo( = Iz!—l—uOAx;rn/?,

we obtain that yO(O) = 0 and (UKC) follows.

|
et

In order to prove that dim g(co) Ker A = let us assume tirst that Re 26>O.

0. Assume that the grid functicn

1

Consider equations (7.45) for c'EQ(;é) with g

Since the matrix MFL(L') i

3

F(x) given in (7.44) vanishes for X, with v 3
partitioned into blocks MI(Q') and MIT(K’)’WQ may write for r -~ O:
m~1 m-1

(8.62) v (0)=- ) MV (T ey R x ), v (0)= Y Mgr
1 L Pty o L
v=0 v=0

Yoy rix)

on v

The vectors VI[(O) and vm(O) are functions of ' and the values of VT(O) and

vq(ﬁ) may be found with the aid of the boundary condition (8.51). We denote

Aiyet)y = rv(0). Since the matrix T_l(g‘):rT-l(

') ieoanalytic in (i) and

JHKC) in o satisfied, it follows that alio v((.),(,‘) tooanalytic. The analyvticity

» Lo A i, o St e




- Lt -

_ 5 . » .
1 and (T l(c'))i ) implies that V;W(O’C'>’ v12>

Since the last row of (T—l(gé))(l) is non-zero andé M(l)(g’) iz a nilpotent
w oc

Jordan cell, one can obtain any value of v(l)(o,

of (T_l(c')) (0,0') = 0(r).

Lé) by a suituble choice of

w0

F(x). The vector V(O,cé) satisfics Lre houndary cond.tion

Y Ve ' X i , 5 DG NS N
(8.63) S(r )Xoz g)v(0,20) + Sle )X (ep)v (0,000 + Sle )X " (eh)v " (0,000 = 0.
Suppose that VI(O,Cé) # 0. Since Ku(O) = KX(Q')V(Q,C')/Y and KXO(C‘), Kxii)(g')

= O(r), it follows that

Ny N . R {
tAu(0) | = IAXI(C')V1<O’C"/f +0()) u % )
where § is a positive constant. Then ihe estimate
n n
[/\u(\’{
implies that
2
in 2 z2 6 - 0 for any J/} : 174‘-‘,1 = ‘z+u“[}x ard any Axo oty

0

which, as shown in the above proof of {(UEC), s not trwe, Thic jact contradic-
R , , .

tion means that vl(n,gb) = (0 and the vector H(L:ik ’ ’arly_' - rﬂ Lo ertion.
/ .Aif(L,H

al to §(CO)XO{56). Since the columne of \Xﬁ(cél,nu P)opan tne cpace Ker A oand

1) Y .
v '(O,Cé) may accept any value, it follows that dim S(cn)ﬁhr Ao beor
Re z5 = 0, we can fix any zi suen that Re n; S and o= fr&,xj,*)Eu(La).
! §
en there is some neighbournood ! o), and e timate To 09 holds o
Tt the hb hooed l((")C((r"‘, i 1 tee Ty baad

L
n(ci). So we prove the neceusnity part of theorem (G.+) for the neighbourhood
winty.

et us now turn to the cause z% = 5. The syerator Uoon vt imate (6090

) T

o
should be defined as P(g') = P(5), where £ = 5 .r © Theeme "ol =t 04 e

tormulated locally in a neightourhood w(ﬂU) fnononntural oway, Lerowe deftine

ke, :
X s, A A1~ 5, , }
. s dhnwa - e - bl
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the symmetrizer R{{') as in the case zé # 0. Since there are no blocks M! with
Re x! = 0, we may write r instead of [z| - 1 in (8.52). Therefore [z - 1 in

(8.54) shculd be replaced by r, so that we obtain

(8.6%) srivi+l vy (03 ]2+ 1v {2 (0) | Zr [T (03 [Pac v, (0) | Por vy (0) |7 e BLEDEL
Since rz’(T—l(c'))O, rz'(T—l(;’))il), Z'(T_l(c'))ii) and (T-l(g’))(g) are analy-

2
'), it follows that} R((,')G,,2 < KHP"Q/,Z'l Lemma 8.10 is now proved

tic in Q(go

easily since the matrix MFl(c‘) is partitioned into the blocks MI(L') and MII(C')'

We should only recall that the columns of the matrix <XO(€6>’ XI(Cé)) are inde-

pendent according to part (c) of lemma 8.6. If (UKC) is satisfied, we have esti-
o " . .

mate (8.57), and if additionally dim S(co)Ker A= 1, also (R.58) holds. So in

the last case instead of (8.59) we obtain an estimate

¥ o > -
2 ol
(8.65) i + A“(Oi Ax . K<-!-&-J———‘ rAX DL >
[z-11"

which is obviously stronger than estimate (6.7) for 'ZOI = . it only (UKC)

iz satisfied, we get instead of (8.60) an estimate

\

P2+ Jv(o) [Zax < K<—ﬂfﬂ4:- + el e e Lo s,

L e
where r\z 1
. vl
ey L
) (rx'] ) ]x}—}
“hen estimate (6.8) with iZO( = k+uUAx~l follows an in the cace 2! F .

In order to prove the sufficiency part of theorem 5.4 Lot ue introduce

erid vector functions v(x) and G{x) whose component. nre part tioned acceording

to vix) and G(x) and are given by:
(1) R D v(;; R

- 1] -~
= re = ro v p
v re'v,s v retyv i .

e - AN N -
e " > AL 5 b i ke Sioitos s S R N S ORI

e




\

and G(x) is expressed in terms of M(x) in the same way. Fquations (7.49) (A),

() remain unchanged in the new variable::
(A)  (E, - M (2"))v,,

() (1 - Mm(l,')EX)vw(x) =5 (x)

. . 1)
iet us modify the former symmetrizer R(L') by changing K and B " from -crl
and rl to -cl and 1 respectively. Applyine to the atiove equatlion: the general-
zed energy method with the modified symmetrizer we get instead of (8.6L4) an

estimate

Gty et w L0117+ Jv (o) ety (ol o by o | e s B

Vince det g(@o)(XO(C6)y XI(Cé)) # 0, the vectors v fu) and v 0, in (8.0 ) are

inear functions of VLI(Q)’ v oL0) and ;o oWt e tU L e eyt o oy !

- ;

v (1) il
I r = 0, the vector b(LO)Xm (ativ "l e Vi P narl to
Ul )X (z'), and therefore
N0
rolon 1oy Y ' . ’
i . : .
If£ 2z' = O,then by part L) of lemmo o6 e a0 2T T B
Sormoa basis of Fer UVir o sqaly 0o, 0 oraone b 3 R ST O
Pamne of S(roile et w0t e T N S
l‘ 0
! - 1 L]
v, L K . Y . ) ) »
and uving the pravion ot it e P e et
o1
J Ve no e exyre SO ' . o Coret
y i + v ' +
oo [ .
.
— &l e e e .
2 P Tt ol - ML 'y . a

-




=153 -

T2
- 2 Gl
[v(0)|“ax < K<-g—— + ]gigAx\<
r /
Tet us note that according to part a) of lemma 8.7 it follows that 16K M,
Un the other hand

(2]

@0y,

Beyato)=e) (ke v (o) (e v (el (o {H 0y

tirce ?(5)x0(¢') = ?(g)fﬁ(cv) = Q if rz' = 0 and ?(g)xéi)(g') =0 if z' = 0,

it follows that |B(£)u(0)] < K|v(0)| and therefore

[Be)u(o) %ax K( 1ef , lel®ax)
[z]-1 s ({z|—1)2 z[-1)

The last result together with (8.65) gives us the estimate (€.9).

Suppose now that estimate (6.9) is satisfled in n(cg) with 1'(¢)=F(£)

and lzo} = l+adx 2 0. We shall show that (UKC) is then fulfilled. Otherwise

there exlists a non-zero vector (vO(O),v](O))‘ such that

S(2) (Xle v (0) + % (21)v (0)) = (') and x(z}) = O -

Let v(x) be the solution of equations (7.45) (A), (B) for ¥ = 0 and C’€“H<C6)

corresponding to the above VO(O), VI(O)' Since the matrix le(a') 15 partitioned
into blocks MI(Q') and Hvl(c’), it follows Lhut V‘I(x) vl . The column:
1 1 a

of the matrix (XO(C'),XI(C')) are independent for any '€007) ), Therafore
o= “XO(C")V\') + XL(C')VI" & vy . Estimate (G.9) implice that
. WTRE W eyt Vi) e ( ] YA |
THL6H) ™+ ax|E(E) X )vio)] /(IZI’[Z”{>  Kaxfel(r')] /\,zl-]zol) . .
o ;x\
Cinoe ﬁ(”}X(l)(c') = 0 and the columne of ﬁ(n)x( rt) e Lndependent, 0

9

£ - . .
3 IR, e - Ry o
H v m-— e nlS oy *




‘l';ll-

follows that vge)(o) = 0. Let us estimate the term uv§lhlz. Since Mil)(g') =

1 + 0(r), we have for any vector w an estimate [Mil)(g')wf 2 {1-Kr)|@|. Hence

(1)

2 (1) 2 R
e, 707 2 6Ax|vr (0)1"/r, and (8.68) implies that

lv(.l)(OHQ l?

N < Krie(g')

/(lz‘—lzoi)'
+ - [ - ' r— ; 1 2_ ' 1 2_ 2
Let us set ' = (go,r, z'=r) with r > 0. Then |g(g')|” = |ol¢ —LO)| = 0(r")
ol
and lzl—lzol = rL~aOAx. When r and Ax tend to zero in such a way that
(1)

2 . . . . .
|aOAx‘ < r /2, we obtain from the last estimate that v1 0) = 0. 1t remains

only to show that %(QO)XO(Lé) # 0. But the vector Xo(c‘) depends actually on ¢

,0,2'), X (¢!) = Xo(c'). Taking some point CiEQ(Cé) with

. v -
so that for Cl (¢ ol M

Re z' > 0 and its neighbourhood Q(gi) < Q(cé), we prove as in the case zé # 0

& vy g
that Q(CO)XO(CL) # Q.

Let us now fix a point '

s (gé,r,z'=0)€9(ga) with r - 0. Then there 1o a

~mu#ll neighbourhood u(gl) of the point Ll: (ié-r, z=1) such that for any ceale )
the corresponding point ' belongs to m(gé). Since (6.9) holds in u(c&), P!
holds also for ¢ = (&,Z)EQ(C]) with ]z! - 1. According to the local version f

. . Y . . "y N
theorem 5.3 pruved . subsection 7.2, we conciude that dim G(cl)Ker P(&é-r) =
\,

(n+1)/2. It fullows then from the considerations of continuity that

. " ) Y 1)
dim ﬁ(cO)Ker P(G) ¢« (n+1)/2. But vthe (n+l)}/2 columns of S(co)(XO(cé), Xi )(gé))
N\ (p
helong to S(CO)Kcr P(0) and are independent accurding to (IKC). Theretore
dim 5(:0)Kcr ﬁ(o; = (n+l)/2.
It remains now to show that (dim ﬁ(cﬂ) Ker A = 1. Dince we prove theorem 5.3

'}

.
iorally, we can nout refer to the case né # 0 where bowas oset equal to Ao Howe

cyor, the proot iv similar. Let us take in (7.0 o prid function F(x) vanishing
Corox Lombx oand cet e = 0. Then the corcesponding values of
v
X «
———e JE . S, | .- --';.»1.»,,”’,, o ML, e " s .

“"4----.--..-'-'.--m--.-III-I--..--.!.-.IQE,...-E==:TE.'




4'—-_.__!_1

_lFE -

D
(1) (2) . . L N
V/II(O),VOa (0) ana v_"7(0) in (8.62) are of order U(1/z'), OL1/(rz' ) and '1!
respectively. Therefore the vector v(0,z') = rz'v(0) depends umnalytically on
- ~{>
(’,'GQ(Cé) with VIT(O,Q') = 0(r) and vic)((),c') = Olrz"). Cuppone troas condits

5.2 is not satisfied. Choosing suitable F(x) one can assume that Lhe vector

é(cO)Xil)(Lé)vil)(cé) in (8.63) is not proportional to %(CO)XO(cé), and hence
vl(O,cé) # 0. We have already proved that the columns of S(QO)(XO<Cé),X§l)(Q6))

. . ,\‘/ - Y .
form a basis of the space S\co) (Ker P(0)). Since the vector

Xil)(cé)vil)(cé) belongs to Ker X < Ker %(O), it follows that vsl)(O,cb) # C.
; st ' > - >
Je have an estimate ( SAx}v(l)(O)}g K (T l(g')\(l)Fn? |
iR ( - L ‘
I ” r 2

—~
o
[@)

O
~

r]z—k

Since the norms of the remaining components of v are of cmaller order, 1% follows

2
that Jull 2 ——éél——-. But the last estimate contradicts the estimate
rlz—l!
2
¢ M . . .
Hulﬁ < -*lﬁi—*jg for positive z. Thus, theorem 5.3 i coumpletely proved,
(Jz]-1)
£ " [y S T At e g i, o .“
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. . .
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. NG o ottt e result
” Leoeoverast by onesghtourhoods o
N
£ iructure of Lhe «-matrix Lie,z)  in
4
mirgr Looctatement 6.0 the ohmractorict i

= -1 of multiplicity "n-2 and o cimp

(f.19) han Tor any 7€ul(7r 1 woret

PR . -y

= roan ogrenvalue off Lie g0 e

doseribe the roobe v Dese v 7= w7t
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30 a' = a'{x',2") = (k=L)sin(E'r/02)/r, B' = B8'(«',t') = ix'sin(£/2),
- Denet = Ll n) /e = 2t SRR e -0 (e )
= 2{C ),
Wiere v1C',k',0') i considered us a polynomial of secend degree in C' with

#r ¢ lents depending on x',z'. The values of r,¢ in (9.3) are riven by

.0Y. For r = O we obtain

NEI C'{k',z') = —AL' + Bix', and L'(v',z') = ~z'{(C' (', ))7/2 .

O when z'k = 0, it follows that |[L'{x',z")' = z2'«xpix',c"),

-—
—_
=
-
I
—
il

Tinoe

weere ple',2') is a polynomial in «' depending analytically on g¢'.

~mnoe +he characteristic equation for the w'-matrix L'(<',r'}), when v' Iv

tounded and r is small (so that k¥ = -l+4rx' # OQ), i5 equivalent to the eguation

KRR p(\(',(,') =0 .

e matrix L'(x',t') may be decompcsed ac

IS L'{«',g") = —(J/c)(sifﬂ")(sgl+c'\
Wi -3i ‘ are roote of the gquadratic ecquaticn sis' w0t =0 1f
1,:
R gi and sé depend analytically on «' and n'€Q(cb), and
ot -1 ! = -t {rvy =
8 [j<y ,\’,{‘ 1 (“{(“l .
+4 Al
©+ e elear that Im si ﬁ(ch> #F0 rer ol # 0 ana Ke n!op O de shall suppoce
¥ =

‘v, tnat o ase that Im ﬂi(al) > 0 and therefore Im r'(Lhﬁ < 0. For 26 =,

U apd s are continuous functions of «' and ' at the point  {x',0')}

7y
¢




B

T e o

- 1R -

and s! According to formula (3.3)

I3 1 =
1.ottg) =0

fe'T+C' | = Ty lat,8te

Tren using (9.6) and the fact that sl-v) = -Pz'« , we cbtain for z' # 0

4

t

v
P

' vy = ; t Vet e (ot R
plk',zt) const. po(a B ,ql\goku N AR

Tt follows from the continuity considerations that (9.7) ig aleo valid for
z' = 0. Thus, for §' = Cé even in the case z) = 0 eguaticn (4.5) may be

written as

- 3 ) I I [N A P! alt VY . .
" .8‘ pO( g,oalK ,Sl(lo))PO ( goal‘( 19 /. 0

-
(g}

ince the ¢'-polynomial po(—gé,ik‘,s') is repular for any values of gé and s',
- .
nive volynomial pl{x',z!) is also regular in «'. Az in statement 3.1 one can
' N 0

siow that for s' = 0 or Im s' # O the equation po(—ié,ix',

3') = 0 has (n-1)/2

roots ' with Re ' > 0 and the same number of roots with Re »' < ¢, There-
Tare equation (9.8) has no imaginary roots k', and the difficulties assoc~-

inted with constructing the symmetrizer in subsection

fet Ki,xé,.,.,K£ be the different roots of equation (9.8) with multiplicities

a

8.2 do not appear here.

S t

L) . . =
11 ',Qil),---,qél)- Tt is clear that Z qgl> = ?Pn~-2. La in sulsection 5.1 we
1 ' 521

,L, and cir~

select small neighbourhoods Q(Kj} of the points K3 d= 1,0,
0 («'). Then Q(ﬁ%}

;) bounding other neighboruhoovds 2y ;

o

siiar contours FS < ik
spt cmall enough so that any root ' of equation (9.9) velongs fTox

For apy r'€o{r)) with 2'vr # O we define as in (8.9

1

i'Ew(c%) to some Qo(r%).

o

~tually orthogonal projectors

s



.
P(z') = (2ni)7? TR (D = 1,2, ,t
J vep 1
w'€r!
J
.. =1 f =1 N
{9.9) PO(C) = (2rni) J L (K,C)Al(c)dz
KEFO
, oy~ 1 i oo -1
po) = (2n) T (0 e
K€FO
f=2re as before TO is a contour around K5 =0, For §J = 1,2,...,t, we can write
/ , -1 -1 - :
(9.10) P .(z') = (2ni) "r * ? F(e)[L'(x",z") 160( L 1B, 2)E (g)axt
J 3 m-1)n 1
K €I,
I‘l) "

jow unlike PS (z') in (8.9) each of the projectors Pj(c‘) has a singularity

q

o7 “he tyre r T even in the neighbourhnod Q(Cb) with Zb # 0. However, the pro-

Q(C) and Pm(;) have similar features as in Section 8.

.

a) There exist matrix vaiued functions XO(c) and X _{z) = (X

(l)<

. ),
“’(z)) analytic in @(z.) whose columns are independent for any z€0(z.) and form

0 0

for z # 1 a basis of the spaces Im PO(C) and Im Pw(g) respectively.

. . . . . Y%
b) X (z) 1is one column matrix and consists of the singular eigenvector mO(O,E).

0
The columns of Xil)(g,z) form a singular Jordan chain of lergth m-1 correspond-
V-]
ing to the eigenvalue « = 0 of L( )(K,E,l); this chain is generated by the

oo
ingular 1ot function wé >(K,E) at the point x = 0.

The columns of the matrix (Xq(ﬂ,z),Xil)(w,z)) form a basis of the space

(2)(

ver %, where B = diag(B,B,...,B). The columns of X_ co) form a basis of the

Y
space Im diag(0,0,B,B,...,B) and are independent of the space Ker (7).

{1} ()
Trhere are matrix-valued functions MO(C) = 0 and Mm(c\ =M (c)Q)M00 (r)
annlvtic in Q(co) satisfying the identities
o \ % i
essere L D0 o 5 o




q

e

Ao o e s v, () =0
N I [} o)
4 4
o a7 ’ \ 5 N -~
Ao o (2 e A (X () =0
o o @ 3 o

and Mm(c) is a Jordan matrix with eigenvalue « = 0.

The proof is a word for word repetition of the one used in lemma 8.2 and is,

tnerefore, omitted.

Consider now the projecto:.s Pj(c') in {9.10). As in (8.16) we define an

sperator Qj(;‘): ¢(n(ng)) + ¢ uy

¢

S

/:\
o
o

Qj(c‘)@ = (2ni)™d % FI(K)L'(K',C')—l(D(K'>dK' .
€ I\‘

Jor rz' # 0 the images of Q.(z') and P1<C') coincide. 1If zé # 0, we can

J
arite

‘e = 1 - ' ' 1 v
902 aglepe s e ™e 0§ Gsilent v oo™
J

: i) el ax

The roots Ké of equation (9.8) may be divided into two groups T and 11
according to whether Re Kj >0 or Re K5 < 0. Each group consists of n-1 ele-
merits, Let FI be a contour in the halfplane Re x¥' > 0 surrounding all the
oints of the group 1 and analogously the contour FII in the half plane

He x' < 0 surrounds the points of the group II. Define the projectors

P(l)(C') = (21‘1)"l § (s'(Cé)I + c'(K',gé))“lBidK'
r

I 0 1
f9. 1) 1
P<:)((') = (an\l" (sf(nt)T + c'{e',z')) "hide!
3 i . (540 AR 1
T

— LD TP IV TOPY e

SR

[ ST W
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- (1) (2)
PR im c P ] 'y,
and similarly 1 (co( and P 7 (co)

Suppose that 56 = 0, and hence C’(K’,Qé) = Bik'. Then the imare of Pi
i spanned by the eigenvectors of the matrix B corresponding to its negati

(2)(

eigenvalues and Im PI

1)
)

{z

ve

gé) is spanned by those eigenvectors which corresponding to

to the positive eigenvalues. Therefore we obtain a decomposition of the space

Gn in a direct sum
2
(9.15) Im P(l)(cé) ® In P( >(;é) ® Ker B = ¢
and zimilarly
re e (1), , (2), ., . .
3.16) Im PII (LO) ® Im PII (CO) ® Ker B = ¢
, . . (1),(2) | . e
One can consider the projectors PI 11 in (9.14) as homogeneous functio
3
¥ zero order depending on free variables gb and si, where s; in the ex
> %
zion for P§K%I is replaced by —si. Let D be any compact linearly connecte
]
set in @ consisting of points (gé,si) with real ¢! ard Im s{ s {and el
a point (O,Si). One can select the contours FI and FTT in cuch a wry thar
v
root k' of the eguation po(-gb,iK',Si>pO(—€é,iK',—Si) = 0 will erous theo

(1),(2)

T,11 depend analytically on

tours when (Eé,si)€D. Then the projectors P

(53,si)€D and, thus, equalities (9.15), (9.16) hcld for all but a finite

ver of the fractions Eé/si. Gince for 26 # 0, Re zé 2z O and real gé the
(55’5i<66)) may be included in such domain D, it follcews that (2.1%) and

,v((‘|>.

hold for all, except possibly a finite number of the fractions Ebh,} 0
{

ua now formulate

Assumption 9.1, Equalities (9.15), (2.16) hold for any jpoint Cé with real
and Re Zé 2 0, Zé # 0.
It may be easily verified that thi: assumption o ratintied in the cu

ol the acoustic equations., We shall, actually, nct uce thic acvumption iy

ns
prec-
d
ud i

e

e COll-

¢

i

o,

PV R S SV VPP S PR,
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Y
study of the block structure of the matrix L{x,z) and only apply it in sub-
section 9.3 for the proof of theorems 5.1-5.3.
Let K% be a root of the polynomials p

)
o multiplicities qgl) and qﬁ

O(—C&iK',Si(CB)) and PO(—E&,iK',Sé(Eé))
resvectively (only one of this multiplicities

may be zero). Define opecrators

(an) ot (e = (en)? é Foled(sy(e,g")T + cr(x',e)) ol axt
J re
J
(2) 1 Lyl t ' ' [} ] -1 [
{9.18) Qj (") = (2ni) Fl(K)(Sg(K LT 4+ C k' yzt)) Tk )dk!
[ r"
Let us rewrite (9.17) in a form
£5.19) o(l)(g')w = (Qni)‘l Fle)[(s!{k',z")I + C' (k"' z'))‘l ® 1 Jo(k ' )de!
: 3 r 1 ’ > “(m-1)n :
J
Cuprosing that ¢« = -1 + «'r, we denote by Lll(K',C') the whole nmxnm mat-

N
rix in the last integral. For r # O the matrix L(k,z) with «k and ¢ given
by (9.2) may be considered as a linear regular «'-matrix. Since the k'-matrix
. .. v 1 . .
L,{e',") is a right divisor of L{k,z) and has qg ) eigenvalues «' in QO(KE),

it follows by remark 2.5 that
£3,00) dim Im O,
j

1 L . .
Ther image of Qg )(C ) is isomorphic to the image of the operator

.

'
0

ole') » (?nj)ﬁl % (s{(cé)T + C'(K‘,r'))—lm(x')dz'
T
J

} 1 .
and han, therefore, the dimension q{ ). Hence, (9.70) holds for any {'EQ(C&).

.

“imilarly we have

NN e 2acis.



(9.21) dim Im Q 2)(E,') = qgg).
. (L), .,y . (), , ' o : :
[t is clear that Im Qj (r') and In Qj {z') Dbelong to Im Qj(c ). Substituting

the representation

LD(K')-_-(Z‘_.'L(K',Q')-—Sé(K',C'))_l[(si(K',C')I*‘C'(K',?’.'))—(Si(ﬁ(',C')I+C'(K',C'))]@(K')
n (9.12) we conclude that
(0.22) Im 0,(g") = Im Q(l)(c‘) + Im Q(z)(c') .
: . vy s . . - _ (1) (2) |
For r # 0 the space Im Qj(c ) is of the dimension ay = ay + qj and, hence,
the above sum is direct. For Re K3 > 0 we have inclusions
{1y, (1), , (2) (2) .
o ¢ - Q ' - el 1y, .
x (CO) c Pl( 1) Im PI (co), Tm | (CO) c Fl( l)II (CO) Therefore if

ceoih) and (9.16) hold at the point cé, the sum in (9.22) is direct for any

1:int ¢' of sufficiently small neighbourhood Q(cé). Tt follows frem (9.20)

(1)

‘iat there exists an nxqj matrix ¥(«x') analytic in Q(Kb) such that the
L ) : (L), vy - (1), , ' - ) Cw .
~.lumns of the matrix Xj (z') = QJ (z")(¥(x")) “orm a basis of the space

'm le)(c,) for any r'€Q ). Since the whole integrand in (9.17) being

J

g
rultiplied on the left by L(

( '
n 0]
L(k,z) 1is analytie in Q(Ks) as a function of «x',

we obtain an identity

;l)( K ’j 4 5 '), where Mél)(

we arrive at

X (r,)X(jl)(r,‘)(—HrM(.]”(c')) e X (o Py =0

t') is analytic In

™
~—
—
<
P
—
~—
i

<
~
=

“hen expressing Q

-t

1 (S '
_ X . . . {13, o
Strection 8.1 it may be shown that the matrix M] \LP) has the only




M

= e -

(1)

eirenvalue K3 of multiplicity q‘j

Similarly, one can define the matlrices

I
X%L)(g‘) and Mgg)(c‘) for the operator Q€2>(c'). Denote
. J
(1) (2) (1) )
M= M\ e M, = =T +rM' , X, = (Xx'/,x
J J J7 Myt ( J J )

Then one can write

Ky (o), Genamy(e) + Kl (2r) = 0

As in previous sections denote

X, = (xl,xg,...,x XO’XFI)’ X = (xy,xm).

#“allowing the division of the eigenvalues K;, J = 1,2,...,t, into the groups 1

nd 17 we relate the matrix Xj to one of these groups. Then the matrix XFl

1o partitioned accordingly as (XT,X J. Having tne partition

Il
(1) (2) . o L
J (XJ ’Xj ) we obtain the corresponding partitions
o (1) (2) _ oo (1) L (2)
X, = (xl »Xs ) and Xip = (x]T X1 )

'n a ¢imilar way define the matrices

t = 3. 1 v, ' ! = T4+ ' A = M
Mpy = diap(Mp, My, MO, My = =TerMy, Moo= My 8 M)

wnd their partitions

M!. = (M'@M! : o= (MogM_ )
pp = (MI8MD ) and Moo= (M @M
Voumual Tlet) o= (AI(C)XV(C‘)’ AO(C)Xm(C')) and the rows of the inverse matrix

- ! \ . . ~ . !
"/r') are partitioned and denoted according to the columns of ('), Defin-

'\J ’\‘ H - . . .
TS E’(c') and Bl(c') as in (7.42) we arrive at the identity




9.23) Llk,z)x(z') = T(z') (¥

4"
For r # 0 the matrix L(x,f) is regular and therefore the matrices X(g')

and T{g') are invertible. For r = 0 we have

1
Sp(Xg )(c')) = F, (-1)Im P( )(c ")
and similar formulas hold for X(Q), X§;) and Xﬁi). If equalities (9.15) and

NED

{9.16) hold at the point 56, the columns of the matrix (X (Lé), X, rg) s n )

e O

independent and form a basis of the space Fl(—l)cn + Ker Similarly the

columns of (Xo(cb),Xil)(cé), XI[(C )) form a basis of the same space. Then
we can represent XII(C') for r' = (&',z',O)EQ(cé) as a linear combination !
f0,2k) o lem) = X (g)c (') + X (c")Cnt) + X(l)((')c (¢") ;
R 171 17 ! 0 DA o o >

]
where the matrices CI(C'), Co(c') and C (7') depend analytically on r'

. e N A I S P S DN 4D

Lemma 9.2. a) The matrices T (¢') = r"17 (7'), r(T (g ))Fl and r(T (z'))_

are analytic in Q(Cé).

. c— 1 .
/) The last row of the matrix (T ](46))i ) is non-zero.
Yroof: Suppose first that Re zé > 0 and equalities (9.15), (9.1€C) are satir-
fied at the point Cb If Re Kj > 0 let us define a function
( Mo (e l e /(“Hry
AN = |x-M_(¢ ‘ K+1+l A
k'] M( }\ N
= - = ' v\
(~1+rx )GWT 7 ;,/(K +1) wj(K ') '

“tere the product is taken over 1 ¢ i ¢ t, i # J. For r > 0 the function

Lo 4 s e VAR S AT 2 WA 1 1 . .




@i(K,C') depends analytically on x in the uni* dire ]r‘ < 1. The mappring

k > x' = {x+1)/r transforms the unit circle [k! = . into tne circle

[«'=(1/r)| = 1/r in the half plane He «' 2 . 71 Qv vasy to verify that the

integrals § le(K',c')dK'[ are un.formly bounded for c'€Q(c6) with r > O,

Jel=1
let Q'EQR(;é). Statility of the Cauchy problem implie:s estimate (8.03) for
e
any « with lKl = 1. Multiplying the matrix L l(K,L) by @ﬁ(K,C') and inte-
grating with respect to k around the unit circle [KI = 1 we oblain

\ , , -1, , ‘ K
uxj(c )apJ(MJ(c 1, (T (g ))Ju $ T2 JM

b

B !ZK{_J% | l‘l’?(K'aC')rdK'l <
I cl=1 N

since wj(Mj(C'),C') = ¢j(M3(C'),C') is @ nonsingular malrix and the columns

5f Xa(Cé) are independent, we get the estimate
o

L)) os K/r

(T ;

1

As in the proof of lemma 8.5 one can show that the matrix ™) hav o a cingu-

1((‘))] i analytic

in Q(cé). Suppose now that (9.15) and (9.16) do not huld or Re AN

larity of the type 1/r" and therefore the matrix r(T~

In 2{g') we can choose a point [

3 = (Ei,z;,o) with real ¢

! 'and Re z!o» 0 sach

1 - wnd R i uct

that (9.15) and (9.16) hold at r'. Then the matrix r{7 (£')) is analytic in
1

~ome neighbourhood Q(Ci) < Q(Cé)- Since the matrix T—l(n') has in Q(La) u
L,

“ryrularity of the type 1/r , it follows that r(7T7 \r,'))1 io unalytic alno

nolnty.
z,r))
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If Re <3 < 0, one should define @ (x,z') as

J
KI—Mi(n')

K+l-r

)=y

5o that the function K—lw (x‘l,c') is analytic in the unit disc }(} < 1. Then

J
2. before we get the ectimate “(T'l(c')jﬂ < K/r and the analytlicity of

rfT‘l(L'))J follows. For 3 = 0 or J = « the function ®J(K,C') is defined

o (x50) = iI/K-Mm(C'7['lK—MO(L')[<E;l

4s in the proof of lemma 7.6. We arrive then at an estimate

e (g )) 0 g k/(]z)-1)

J
aril Lhe analyticity of (’}’_l(c’))O and (%—l(c'))m follows as before.
Let now L'€Q(c%) with 1 = 0. We shall repeat the arguments used in
N (2)

Coamra 8.5 in order to prove that (TVI(L')) = (, Let usc fix in {(9.23) =2 i

i)

N , . L n .

e of ¢ different from the eigenvalues of B (z') + B (') for all r€alg! ).
g 0 1 &

BN T ,;\"1/ ' , { I ~

© v€Im T /'), then also  ve€Xer T/r') and therefors

. v "~ 4 -
oot TN S ARSI CANESS S AR D IR AL

G

n, ~, - . , v .
Lenocting wo= (EO(L')+KBI<Q‘)) Ly ve have K(rt Yu€ker L(K,CO) < fler R, e coum-

Lonents of the vectors u and v are supposed Lo be partitioned according to

cojumns of X(¢'). Let us recall that the columns of the matrix

o \ {1y, . ) - TR

LA )’X"l((’ ),Xw (")) belany to the space Ker B+ EJ\~1}€ , and that the
3

-y
coamng of X(L)(r'), which form a basis of the image of diag(0,0,BB, . B),

o Y
: e - . (2) _ . (o)
qreindependent. of the above space. Theretore u = 0 oand aloe v =
) o
C e ) = () , -1 () '
St \\1( Tz 0. Henee (7 Broe s = 0 and the matreiz (e (00 )
L \
g3} oo o ar
gnelynice in SE(I,(‘\).
.
j 9 L3 - oL ey [P ;

VAR W ST R —" o) i
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Let us now prove the second part of the lemma. Denote X (') = rgx-l(c').

Using (9.23) we can write

-1--1

ey = Bylenwd (e e e,

where «k is fixed as in (9.25). Since T—l(g') is analytic, it follows that

~ -

K-l(c') too is analytic in Q(cé). Let now r = 0. Since (T—l(g'))Fl = (T_l(c'))ig)

n
= 0, it follows from the block form of Bo(c') + Kgl(c') that also

(X-l(g'))Fl = (X—l(c'))ig) = 0. If v€Im X§l(c') then also v€Ker X(¢'), and
i
since Ve = vig) = 0, we obtain that Xo(c‘)vo + Xil)(c‘)vil) = 0. But the col-
umns of (Xo(c'), Xil)(g')) are independent, and hence vy = vil) = 0. So we have
{

chown that X-l(g’) =0 for r = 0 and therefore rX_l(c') is  analytic in Q(;é).

. . 5 - iy . . .
L=t us represent the singular eigenvector @O(K,n)cKer B as a linear combination

‘oo ~ i} R 65 PRI 6 6 PRI
12.06) ©olesm) = X (e (i) + X7/ (6 u (el) s

wiere ' = (£',2',0) and, hence, Xo(c'), Xil)(c') do not depend on &' &and z'.

v \
Jince for different values of k the vectors ¢b(x,n) span the space Ker B, we

(1)

<3

may assume that the last component of u (gé) is non-zero. Let us define a vec~-

Lo u(g6)€*mn by completing UO(C6> and uil)(cé) with zeros in the remaining com-

-

tenents. Then for b = (5',2',r)€9(cé) and £ = 1-£'r we get

Golxat) = Xl hule)) = redo(n’)

wrere MPLG') is analytic in Q(cé). Then the vector tunection




is also analytic in Q(cé) and defining g(c') = u(C;) + puf(') we obtain
N v
db(K,E) X(g'yulg")

Let us denote

Bylet) + ol (2 R(er) = ¥
Then ;
T(eV(') = Dle,0)® (k,6) = 0(z-1) = 0(r°) .

Multiplying the last equality on the left by T-l(c') we obtain that
Ve e moe e

et ot o= (£',2',0)€0(5)). Since (TTH(g')) = (T

2 2 .
( )(C') = 0 and therefore (r') = 3( )(g') = 0. Then

o o w

"\ , "
that also vFl(E ) = v

. " .
the uniqueness of representation (9.2¢) implies that wu . (c') = uu(cé) and

i {(rn') = u(l)(cb). It follows now that

o [= ]

.. i . 1 . .
ince the last component of ui )(Cé) i non-zero and M )(K') is a nilpotent
wl 1)
Jdardan cell, we conclude that the last component of vil’(c') and, therefore,
. . =1 ' ‘(1) . ) m :
the last row of (T ((,0))oo are non-zero. The lemma is proved.
. '\, . .
9..'. Block structure of the x-matrix I.{x,7) in a neighbourhood Q(cé) for zl=0.
Lot Kj be a root of the equation rq<—EA»iK',ZG = ) with nultiplicity q,.
A o

THen K% is a root of equation (9.8) with double multiplicity qu. The matrix

.

i

.y 1

et AE6 + Hix'! hac a zero elgenvalue of some multiplicity p > 1. An in
i ) J

QT S PVE YR SR
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“emma 3.4 there is a non-singular matrix D{x',z') analytic in Q(K;)XQ(cA),

wiiich provides a similarity transformation

0 N_ofwt,ot)

N (k'a(') = O ' s !
0 - ;
Voe, el
1 :
- 1
i
where the coefTicients e, = ek(K',c’) vanish at the point (r;,g:? and the matrix i
) ARAE ;
. . . . \ . i
Nl‘K',C') is non-singular in Q(Kj)xQ(CA'- Ve may assume that the first column i

of the matrix D(x',z') is the singular eigenvector wo(u‘,B'). Dencote the second
column of D{x',z') by @,(k',2'). It is cbvicus that the kernel of the matrix

>2

1
Jovt ' '
C (KJ,LO>

matrix corresponding to the zero eigenvalue. Multiplying the matrix 2{N («',0'),

is two-dimensional and @W(K;,Cé) is the second eigenvector of thir
17370

v',0.'") {the function £ is defined in 9.3) on the left by the matrix ¥, as in

LY 1
lemmas 3.4 and then by E = diag(-(z'K)—],Q,Q,...,E) we ottain
el e, er2 ep—l -1
0 ) 1
E;)Ell(NO,K',Q') =0 o 5 1 (/J + () + oz

. ]

0 o > ‘

A o=

toe firat column of the matrix /v 5 sero. Mult i lying the matrix thuo ‘

cained on the 1oft by




N

~ 171 -
1 ~83 ~-ey, 'ep-l 1 ©
0 -82 —83 . . —%\—l 1

we get

el 62
0 el 8] (:)
o 0 1 +olr) + 0{2'),

. 1 1 =
E 2(Ngax' st )

2 ‘ L .
U

E3E

ere again the first column of the matrix o{r) is zero.
-R(NO,K‘,c’) as Né(K',L'>. Replace

e resulting matrix ESEZEI

‘. us denote th
ew one denoted vy the sam

. Operator Qa(z') in (9.12) by a n

e letter

INCARANIEIALS NABC 1A MUSNARRLANLY )1 ot Nax!

PN . _ -1

{9.08) Qj(g)w = {271) %r‘Fl(K
J

= (oni)7h § Fl(x)D(K‘,L'§1(N5(K',c'))-l$On_o]w(K'>dK"

T

nd (9.12) coincide and

Tt

Q,](c') in (9.28) a
alytically on Q‘EQ(,O

(z') depends an
rals become analytic in

sopr rz' # 0 the images of the operators
The new operator Qj

.o note that the expressions in the above two integ

AlsO
. - . N, ’\‘
uimg)xﬂ(gé) when multiplied on yhe left by Tlk,5). AT
i
né) = kK'~K3) ‘TQ(K‘),

rave the dimension 2qj.

in lemma 3.4 we can write

q.
' 1y = oy ! J ' . . v
el(z ,go) {x KJ) fl(K Yy and LE(K .




where £(x') and f_(«') are invertible in Q(K;) and r, > 1 iy an inteper,
3 Sowrto= Cé Lhe operator li‘(c'§

s

i.‘l ("‘._}3} m ?ly })C .'.'I‘EJL{‘H a8
L0 09 (C'\‘D ( ) '1( l) ( ! C'
| L) w n’ - 2 1 I - Dk Ly 0

irog, = 1, the image of Q.{gl) is vpanned by two linearly independent vectors

(K{,Ca) and has therefore the dimension &q,. In the

') and F {-1)@
race of q, > 1 we should make an additional

Looption 9.2, The image of the operator Qi(cb) in (%.29) has the dimension
J

ret us note that if the order n of the matrices A and B is equal to 3, then

= O oand 3, = q, = 1 50 that assumptlien 9.2 ir fulfilled.
N . . . . ey (1), ’ (2) vy
5. a) There exists matrix valued function X,(g') = (X, (g ),kj (e},
J «
= 1, ,....ty analytic in Q(g%), whos= column: form a btasic of the imare o
] , N ;
{ o . -
: sy i (a.P8) for any c’€n(gé/.
| ' (5 N
R . . \,,\L)( PR N . o 3 v e - 1)
: Faroz! = 0 the columns of X (z'" reicony Lo Ker P(&) {where £=n-f'r)

N
T F,‘)) = Fl(~L)ﬁ"'.‘(c(‘)), where the columr - of .‘ff_((,’l“.' form a cingular Jordan
. R : )

cnualn of length qj corresponding to the cicenvildue ' = k1 of the sinpular
semmdrin - AL+ S
) . N . ; | E. . -~ Lo o P . TS
Trere jwoa matrix valued function MUUotb oo ovder D xUy, analytic e QU0
.l B o L
. that the ldentity
'
Pt s et
o et T b, Nl clrenvalie s '

Uit 1 1 CRPSLNEN J
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iV The matrix M;(c') is partitioned according tc the partition of XJ(Q'):
MU () M (')

) ) e

23D M (z) JIL 31 s ]
M}?J(c‘) MEQQ(C') 1

rere MU (') = 0 for z' = G,

Rich

Peoor: Qince dim Im Qi(g') qu for c'EQ(QO) with rz' # 0 and for ' = cé,

e dimercion of Im Q‘(c') is constant for all points r' of sufficiently small

o

v and the image of Qj(g') depends analytically on C'EQ(L&).
1y,
Te Tw 0 7{n') the restriction of QJ(§'> on the space cof vector functions
o — ; {]‘)/ 1\ AN} (l)/ 1 > 3 t
R kG0 .. 0, where © (k') is a scalar function. For z' = O we
PR \
N o -1 1
A e = en) TG E oo are e e e ot (e ae
3 o+ 0 1
. h
=)o (at,BY) v F (e la,B) = ¢ (k6] € Ker B(&)
1000 > 1Yo o2
o e = 0
’ - - - X
Foladwglant,gt) = T (-1)e (ot 8t € Fo(-1)Vy < Ker Flm).
. . (1) N . .
s Toroa' = 0 the image of O (g') be.ongs to Ker P(E). Substitutine for
N qj—l 3y
o " {¢'} respectivily the functionu <K'—l¢'j) .fl(Kw’ (K'-—K;) v ‘fl(K'),
N (1)

-1 vy and applying the operator Q. '(z') we obtain the 4., columnz of

) . ' , R X

et Y Tinee r”](K',f,L\ = ety o ety Tooclear thot
‘ ‘ .
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oot furction wp(—gx,iK‘} at the point «' = «!. Therefore the columns of
N C .

(1 ) _
) and, hence, those of X, )(Cl) are independent. Tf Qf¢

! e o L) is small enough,
. ¥ J L

LW (1), . e ' ' . .
Fhe of X, (') will be independent for any ¢'€R(r!) and form a basis

(r') for z' = 0. One can add to ather g, ones which de-

J

vend analytically on o' in order to form a baslis of the ©1,-dimencional space

>

T 0" e shall denote tLho nmxD thus oktained by ¥,.(g') and par-
1 ]
B o
vl ac ,(l‘\’yl) ())( t) 1 omay re gsoumed that ¥ ( |> =0 ( l)(\L( v)‘
noitoas AT (), K (gt)). b may te assumed that X (') = Q. (¢ (¥(c')],

J [l ¥ J

('), ¥ {(«")) iz an nx:?qj mutrix analytic in Q{x'). The

. %

watrix MUY 14 then defined by the eguality 4. (") (k'¥{k')) = Xj(x')M%(g').
> J « o

Mo, o oon the case zt # 0, one carn show that identity (6.30) is ratisfied

. ) . - . Q0
has the only eigenvalue k', Jince ¢ (0! ){(e" *ZK'))=
: : AT

(1)

1
= BREARE ) and for z' = ¢ the columns of X, (') form a basis of the
J
o T Y = 5 Tor z' = O,

‘neothe , o = %X (r) and Xm(c') = ¥ {r) defined ir lemma G.1

i ld thie wnole nmxnm matrix

vt ition it oas In the case 26 # 0. We additionally partition it as
. AN PR
S G O AL D AL £ 8 AL o B SRV C O I
A IR X} . TNt 0 e /s - ‘)‘L‘? * oo /s
[ LT
R Ay L)
: =R LG E T and X0 F e 4 )
: =1 . '
! ¢ SN TUOr s ned MUY mre determined ac in the previous suti-
: . , ¥ .
. el gt Dol aeserdine 1 ST et inty e w0 and B0t an i




= Tt ove mgiotti _'___.'._.__77*

A . . .
“oao) we arrive at identity (9.23). For rz' # 0 the w-matrix Lik,z) is regu-

curoand the matrices X(g') and T(g') are invertible.

NGSY

: 3
| Teera o O.h. a) For z' = 0 the columns of ') telong to the space Ker P(E),

and the column. of (¥ {7'),% >(C'), X (")) as well as those

(1) . O
X )(C'>) Torim o basis of Ker plL).

1
e
T
|
=
!
sl
~
“

ool h ) cogae
~—
-~

2)
r!) with real r # 0 and real £' the columns of X( )

- "
of the space Ker P(E).

“roor: The Tirst part of the lemma is proved exactly as part b) of lemma 8.6.
us oo oon to the second part of the lemma. ¥ix a point gi = (Ei,O,rl)EQ(gé)
L
15! and vy # 7, and dencte El = n—girj # 7, Cl = (51,z=l). Tn subcec-
L - - 4
fier 7.l we nave investigated the block structure of the k-matrix L{k,z) in
& £ the point r,. T2 avoid contfusion we denote the
1
b vlzi. We snulil cornuider only the points
cufficiently small oo that the corresponding peint
! (m=l)/r teloras Lo QU 'i. Denote by T,y 4= 1.0,.0..,t,
i 9 N ]
I . N RN T, . - N . r,"/ \
oo ronstant contour -1+ r]x:. S Nee e renvacues of the vepnteiv Ll ) near
Lo
1 oo oot v o= =1 ogre cubdivided tnto U grours surrounded by the contours Tﬁ'
| T edeenvalucs do onot crons the ceptonurs T ocince the corresponding elgen-
: -y \ 5 \ .
e et e e v Temateiy LNat Lot where 1t o= (g:,z',rl)EQ(g&,, do not croo
. e cortours UV e eolumne of Y00 are partitioned s Vo= ("1"(,‘,‘*"}“1,':'@) and
oy ) o
= 7 L7 as i 7GRN0 According to the atove subdivicion of the
cervalues , woe partition Y, 0= QYL,Y ,...,YL). let w note that gany matrix
i . : . o S . .
: o0 i toe old notaticr (7.37) 75 included as a whole in one of the
/ o L)
3 W i) The matrices Y, oare aloo rart tioned s (Y 00 s that the
H [ N
! SRSV AT R PN F '
: o DA Cnob el o Fer 2 0E 0T e these of L) =AYy ((,1),...,
‘ o Lo T v - o Py )
7 "1 Co nre lrodependent of Fer I((I Lo o orto= (r,l'au' 0, YJ)EEZ(C(;)

G e o= TR b€EQlr Y, Lo cpacen cpanned Ly the columns of XJ(C')
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. _ ~ \ . IR ‘
wocreerpemads oaoreot ' o= (el /e of the cguation P
: v
RS vy nhoe contour [, where the Qunceticns o' and B!
;
wiotoo 7 = ot Uinee the number of such roots «' 15 egual to
: Ly LI P (1), \ N
e rnnpiees 00 Lt und YT (g, ) nave the same order
g 1 J 1
oot )( oo v . “( JPN ' ;
po (r.) = oy £l N xer T(g,) = Cv ¥ (gl) Nt
. : . : 1 S|
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iot o now prove the second part of the lemma. As in lemma ©.7 it may Le
! ,
ottt bhe matyay retx T00 V) o onnniytie in Q(C‘\,). Weo shall apply now argu-
s oaee o opaes TR o8 Lemmn B0, Tet ue Tk v difUerent from o the
" U
PR ARt (VD B SRS S VL NS AR TR C'HNU)) and represernt the veelor
.
- TR ( ! \
: |
. - ' / [ L] f
Y. van = /.,}“) RS N I A ’U,,D ("()>a
TIPS LS S R ool weo Mmewy smionne tiogh Ui ooy component
R : mr, . ¢
Lo DonezeroL Lot ows detine aoyeetor wl{ECT by completing u (100)
. ! i [
i SLooveros arn Lo rereiinings compenents, Then foreonto= (£ 2t rl€
i ’
PRI T ST U SR A PR
(D"’,, - ,l/ 13 I.E’A(n‘ l,’
R
] - e g, W,
i oanadinn o

N n
yoendent of Ker Plg) =

. Syt
; Ll

ety = 0 and hence
- T [‘:‘ffh_’jj. feoin d

Therefore alvno tho

Uoingr the Independence of the columns of Xi((;’) one obtains as in Leme
the eotinates .
<
"1 ~1 Kir z'
Tt “n ret {7 ! < = .
(RO A I wd  yrz (7T (') Voos T3
reo cutine the correspondin arguments used in part a) of lemma 8.7 we prove
. “~1 . -1 , - .
dytieivy of T (') and rzt (T ((“'))m' Let o' = ;g',o,r)esz(z,[‘)> with
~ - o - [ ; [ (2> P
s % D oand . Since T “{¢') @ Ker T{z') and the columns of X “'(¢') are

Im
a . . .
V. (%), we obtain as in lemma 7.6 that

- - /m—l t \(‘(‘> . “? rp—]‘ [ ] f))
the matrices v{T “{r') Vil and r (T (r')) are
. L)

- , =1 , ,
G, one can snow that (7 (C'Mm = 3 for r o= 4

0 { )
rir “(r,‘));"> i analytic in sw,(g).
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W Ap(g') is analytie in 9(46) and for z' = 0, Ap(g')€Ker T{£). Jince the

pumns of (XO<C'),X51)(C'),XL1)(

1.7 a vector function Au(g') anaivtic in Qg

I}

L
L'}) form for 0 a bacsis of Ker DE), there

[

) such that

(1)(

: 3\
Au(' (') = 0 and Aplz') - % ctiaw Tt = atapl(nt) .

e Mp{7') is analytic in Q(Cg). Then the function Aulz') = X-l(a‘)(rz'Aw(c‘)\
Y A
wnalytic in Q(z'), and defining u(r') = u(c6)+ rau(g') +aul(z') we have
D N - A n
@ oik,s) X ule'). Introducing vic')y = (F (¢g') + KHI(C'))U(C') wve get from
B J

R
’ N e N .
AN S and =inee the matrix
, a4 o obttan that vie")CIm T C{nt) tor ra' # 0 N
cemmns only tu show that the lact component of Vo
“~ T
v V. N bl
toopart a) of this lemma all rowe of 7 " (z2")
b
N vanich., Theretore v o (0= v o
Fito w ¥
o, ~, , . . ( o ) .
Ctothe matrix B0t e el Lot e o (o= (7' = 0 Theprefare
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l)(c’)) belong

Since all the n+m-1 columns of the matrix (Xo(c'),XI(C'),Xi
for r = 0 to the n+m-1 dimensional space Ker B+ Fl(~l)cn, they also form a
trsis of this space if ' is close enough to ;6. Therefore representation (9.24)
15 still valid for the points ¢' = (g',z’,O)EQ(Cé).

In the case n = 3 it may be shown that assumption 9.3 is fulfilled. We can
¢l o prove lemmas 9.3-9.5 without using assumption 9.2. Then only part a) of
lemma 9.3 should be reformulated so that the columns of Xj(c') span the space
. Qi(g') for any c'GQ(cé) and are independent for r # 0. Thus, assumptions
4.1—;73 are connected with the boundary value problem and its stabllity and not
wilh the block structure of the x-matrix i(x,c).

/. 1. Proof of theorems 5.1-%.3 in the nelghbourhood Q(;é).

we consider first the case xé # 0. The operator P’ in estimate (6.9) is de-

N Vol 3 - N B . o - .
tared as = B o= ulnr(”.“,...,?). Thecrem 5.2 is formulated now in the following

Lorm

. ‘ L . A, , . . AY v .
Cnrtierency: 1 (UKCY o owatisfied o 0o’y and dim S{n,l) Ker B = 1, estimuate
0y k] bl

Do) melds in Q(n') with A = 1.
s ey %)
Lo ity 1P estimate (0.9) holds in Q(c&) with lzol = 1+aOAx, where

¢ : o, oand Sin,l) Wt 0 # 0 , then (UKD) io satisfied in Q(Lé) and
: Y

Preeorem 9.0 1o replaced Ly the stronger theorem 5.3 and theorem .1 1@

croiated Loeally ac dn o sutrection 80320 Applyinge te equation ([.LL) the
" . ; o~ - ,,’L( 1 e .

o (rtaix), G6lx) =7 (" )F(x) we arrive at equa-

H

ol cranctformation vix)

Lo DT Y where boandary eondition C7LhS5 () should bLe written in the form
SN e ddagonal Vieors of the cymmetrizer ROGTY are defined acoin subsec-
CLeL amely, ;
O A I AR R R T VPR R '
T ‘

) o %




| R‘(q') = -~cT when Re Kj > 0 and R (') = 1 when Re k] < 0, § = 1,2,...,%

Jince
Re RJ(Q')Mj(c‘) £ =81 and vj(c') = —1+rM3(C'),

.

it follows that
ME(C IR ("M (') = R.(z") 2 6r 1

Tor sufficiently small r > 0. Then the symmetrizers RF(L‘) and R_(L') satisfy

} tor any L'GQP(Cé) the conditions
3 !
I5e) P * t \ ' - ' B tY _M% ' ' ' P 1
330 ME(g)R (g )M (2') - R(o') 2 8r 1, R (£")-MA(0 )R (£')M (0') % ér 1
Wyl R (g0 v [l 1 (c") vl b, orlv, |
iy v R vooz~clv_ | +|v vER (r')v z-cr|v.| L,v¥R (2")v ir|v | .
; : F1 TF1'e VR IR ACTS BRI 0 ol aVaERG(E v arlvg,
J
. . . . i
Aprlying to equations (7.45)(A),(E) the peneralized energy method as In subiec- :
tien 7.2 we arrive at an estimate
2 ny (1), 7 '
R T O L o e S e D G R R R O N S O AR :
COERRCT) S
2 . .
1o note that  uy = ﬁX(ﬁ')vH < K oo P the norm of the matraoed
i -1 (v -1 ~1 Lo
7 \ r - m ! LT o oo
ol /K'}/ﬁ, r{7T ([')§m , e ;o - (C'\)m P Younden tyoFoe,
Neooemet o an ect imate
Fher ) Ver o Sy
rosutsection Bl oone can e that dnow{ot the condition WY ie oepgi-
“ent bo the condition det Sfr Yy ot v S sl Tpravided Q00T L part - .
et omall ). The proonl dc cdmpte cLnee e matr i M !’ ! paart it e
i
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51 blocks MI(;') and M[I(C‘> with eigenvalues belonging for v » O Lo Ve do-
maing lKl <1 and lK‘ > | respectively. We use aloc the fact (Luved on

LR

ausumption 9.1) that the columrne: of ) X (hs\) are independent.

!
Consider the boundary condition LT {UKC) e rulfilled, we et

4n ectimate

- & - N ; o e
£49,36) |vo(0)\c + ‘VI(U)\ s h"vllx?ll LR AR RN R IS A
EY 3 - » . ,\" - ,\’ . . ) >
T additionally dim S(g.) Ker R = [, we wset as in subsection 8.3 the cotimars

0
‘A.58) and rewrite it here:

l? + r'vO(O)IQ < K(le:(O)\Q + \vie)(O)l2 + r‘vil)(“)|'+!ﬂl‘>.

3

G v, (o)

Db

“hoosing then the constant ¢ in (0.%%) sufficiently small we oblain fron (9.4

and {9.37) an estimate

1)

’

239 rhl® s (v Yol e FI"(\(O\‘]? + ’”l"i

F1

< K(Hyt . IV‘JAX>

Ascuming that VO(O) and vI(U) ure Linear fanctions of gy v ](HJ aped v LU0 e
. ) . ‘ v v

ty egquation (8.51), we may convider aleo the vector Byl = RY (et el vy
Cinear fanction of g, VT,(U) and v {00 with coefficients ansawt oo Wt

W elain that there 15 an estinmate

) "N . - o i \ . p o ( v : :
RN [Bufu) ] « wife] sl top w Jev, ol + e 0
o o ! 1
+ ’\JJ { toge ( "j ) e { 3 .
cnoph Lo show that it I A S (Y = 0, Then ouln) nolinear
)
L . . N T U ‘ﬁl)( RN .
ctination of the cobamns of T4 (ot hyd  tntiuX ety and, nocoordinge ! (o o,

ray e written ac o linear comt Tnafooon
f

"

el e AT At M g 2o .
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ul0) = X {e'lw.  + ¥ (7'w + {(1)({,\w t
f\\ 70 1 ! w EIETY i
ERITE f¥(g,,))u(t)) = g = 0, we obtain that
] Ve o= (o Ny () MR R DN
')({‘O)Xl(r’ )»1} = —U(CU(A.O«,L v, + X g )um )
. o ‘ oy MO & &
cr or o= 0 the columns of X (') = X . {r ) and ¥ (rt)y = ¥ 7' (1 ) kelong Lo tio
O SRS © @ 0]

& A . . . .. . .
syvace Ker B and according to condition 5.1 the right hand side of the last ecgual-~

£\ v N
it¥ is proportional to the vector S(LO)XO(c'). Since det S((‘o)(xﬂ(c')’xq(‘["/ IEXSN

A" A"
1t follows that wp = 0. Hence the vector u(Q) belongs to Ker R and Ru(0) = 0.
Using (9.38) and (9.39) we obtain the estimate
’ 2 2 (2) 2 2,0z
[Bu(o)|“ax < K(lu) ax + [y " (0)[“ax + 1oy /r) .
. (2) C
tre value of v_"'(0) is given by
m-1 ;
‘ 2 ? V=l 2)
19.140) W0y = T el e e e i)
\):O oL
. S NN St ) . o Cod oy
Uinece the norm of (T (g ))w is bounded by K/r, the norm lv,x‘ ()1 Ax bound-
) 2,2 . .
i by KiFi~/r , and we arrive at an cotimate
o o S,
[Bu(o)|“ax « Kilel ax + 0wl /e )
“ne the last estimate and (7.383) mui tiplicd by r, we obtain
‘ 2w Y e . o RIS
Ll rTpuy 4 JRulor] ax ¢ KCle| ax o+ BRI /20
roa \'L-ll 2 lz[—l, the 1ot ertimats o even otronger than (G000 v
o } = 1. Thus we have provoed the i Sieleney part of theorem 0,
e mcoame that oonly [DFO) D0 ralt oo, Ther (o6 and D000 ey gy U

safficiently small tont

k.
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(9.L2) riul” + Ju(o)|[“ax ¢ k(v

The value of yil)(o) is given by

(6.43) Vo =L M - v
v=0
and satisfies an inequality
m-1
(1Y, .0 . L2,k
fu L) lvw foyl ) [I"\x\)\[ [r = ;’,[rt‘[ /r
v="_,
2
Cince vT 32 |zl-l, we get from (0.0 ang (0.hL)
2 |k K
RN Hal-1Y g < K<%~¥L- + + | Ax\
FAEN /
Then for |z] >]ZO| =1+ aOAx with oy, . 1 we nave
r > \Z‘—l > \Z()i - 1= a(\Ax and hence  Axeor o~ o
Therefore estimate (9.45) is stromger thar (6.8 witn o | ae wrove.
0

Let us now prove the recescity part ot theovem %0320 Juppone that
NE! il

not satisfied in Qg ) and therefore there exists o non-nera veetor
s

v (0),v_{0))" such that

") [
" N
Sl )UR (ot fa) + X[\CH)V1<U>) =

Gefining with the aid of v (G, v (1} a nhomogeneaus solution of the eguat
) i h
Sy ) I rot Pror (6000 ity Fo= W, gt imat e
Jeod (A), (B), we get frop (600 wity = an estimate

oy .
‘ﬂ,(/‘(w\ >V, a 1

(W)

1.
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et ——t e
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(0') = S (e v (a) + X (v {0)), so that glg)) = 0.

V= 0 and, as it follows from assumption 9.1, the columns of

(a3 N '
Cince (O(QO,
. . A%
X, 5t are independent of Ker B, we conclude that VT(O) = O and hence

Do N
iy AR 1 = . ase h yor he g v Ty, . 'ore
"U’”U(CO)VO(O) Tt was assumed, however, that (:O)XO(CO) # 0. Thererore
v {0 = 0 and (UKC) is proved.

i

The proof of condition 5.1 repeats almost exactly the one used in sulcection

# U. We indicate only the differences. The vector function
‘2 ‘1(

3 for the case 2
(0) instead of rv(0) and Thl(c') = r°7

.

'
R 0

v(n,r') is defined as r'v

'), Since

™ .

- 2)‘ ] . .
L . T l(g'))i are analytic, we obtain as before that
(?)(“,C') = 0(r}. SCuppose that vy

. A
N g . - . N . -
oLt/ r and instead of the estimate XU(O)’ 2 &/r we
> |

(0,z') in (3.63) is non-zero.

—

et
Lo, ", - o , )
[fu{o)] = \er(c')v](o,g')/r + 0{1l/r
o the estimate
A . ’
O S A R D)

P

fepiien that

Tet us detine § = “—riﬁ and

“ovoany lz) o2 e = l4a Ax and any Ax o .
9 ()
o N
= l+r 2'. I'f r and Ax  ternd to Y o ruclh oa way that v Re 2! 2 Do Ax, we
o (] (‘ Y

0
;“ il
crtain that  Jz) - jo | = o(r") wnd v/ !zl—’;:()}) = 0(r") » 0. ¥enee
; ‘ : o R |
') = 0 and, as in subsection 2.3, it tollows that dim Sl FKer Bo= 1.

’ e
Vhe case Re z' = 0 1 conusldered exactly an in subsection .2

Lot us now conclder the case o' = 0 The operater I in estimate (0.09)
“oould be detined s blgt) = ?(F}, whoere £ = n <f'r, Theorem:s H.1, Y.0 and
Sfticiency part ot theorem §.3 are Sormplated locadly in H(Lh\ irnoa natuar-

Coway . The neoeecsity part of theorem S0 P00 formulated ac followo:

L

S AR A O T P W 2 s e
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If ectimate (6.9) holds in 2(z!

! o . \ 13 \
wnd the columns of the matrix Y?(u,l)(\fo‘.c,,‘\ [ i-ii ‘(g\'})l are indevendent, thern

= I+ A%, where a. 2 U,
U

(UKC) iv satisfied in a(:g\,djm Sl Ter Tos oL oemd oondlt DT Talde Coronry
et £ = on-3'r for whiielo ' o= (g ,y*,‘))&'(}((i].
Defining the symmetrizer R(z') ar in the case 7! # ) we arrive a: tefore

oo et

# a4t +the estimate (9.35). Now the norms of the matrices r(7

(e, and (g )

G
are bounded by K/|rz'l and

z')

2 2 2
IR(z"Y6™ ¢ KEI/{rat |7

am s

Ar in the case z! # 0 one can show that (U¥C) in “‘“’(C"w'\ is eguivalent tc the

)(Xq(cg), XT(;5}3 # 0. Theretore 1t {UKC) is fulfilled, we get

j 4: before the estimate (4.3¢). If additicnally conditicn 2.1 ic satisfied

we et the estimate (G.37), Mhen aleo ociimate (O B Wnldr withy exprescion

P ,"ra reviaced by ¥y /({2 "), Theretore

adosince Jz)-l g ja-1) = ain final)
S L6
F
:’ Lo estimate (6.7) with i::\li = 1. Thus thecrer S.0 10 proved.
' Now assume that only {(TKC) 1o fuifili=d. Then in <ot imate (50000 one
euid replace ”F}JE/I"JJ Ty “'rfs'\/ (1:2"‘"‘:':} and an Dk ME, Poor™
v /HZ'lL)r V.o Then estimate (90657 0 ctiil vl bd oand eotimate D80 wiy
b= 1+a0/\x > 1 followe Ao it oo o ow
Sappose now thatoin ‘».'(r","fv RIS U S S S Y S AT S S
Cledl dWe may consider the vecetor oo WYL v T, et pinear et !
A

H_e«"-r.,‘.‘..%,;;‘&_'r
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&; of g, VII(O) and v_(0) with coefficients analytic in elz!). Then thue Tollowing
! vstimate holds
[t
2 (1) 2 ; 2
! (9.57) rz'v. (0)| " + |z 'v l/(O)I + v )(ﬁ\
‘ 0 T
3
» 1 o {1 2 (o 2 2 2 ¢
< K(Irz'vi )(O)[ + iz'vTI)(ﬁ)| + !v%T)(D)] + v o e el ey
L
In order to prove (9.47) it is enough to show that
; . . (25, .\
(G.L8) VI(O) =0 if r = VII(U) = v, ") =g =0
and
(2 ) 2‘)
(9.149) vi )(O) =0 if z' = vgi)k”‘ = vi )= e =g
; Then indeed
1 . e \ (1), \
v< )(0> = H(R’VWL(\\’Vm (0, »v "7 {0
{
| wnd
o) (2) A (1) i .
W 0) = oo o T
and estimate (O.L7) follows. The recult “n (9.43) fo. lows from ectirate (&, 37
Jippose now that the conditions in (9.00) are tulfilled. Then
N X (0 30 (1) N R
0 = Somla) = S X (o (o + oDy e e
0 a ¥ i - .
1
b
! VIR
+ ((‘/‘\I ( )\’Y O
i
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According to parts b) of lemmas 9.1 and 9.3, the columns of

(X {z") XFl)(c ), X(l)(; ')) belong to the space Ker ?(g). Condition (5.2)

and (UKC) imply that the (n+1)/2 colums of the matrix §(2)(X,(¢'), xgl)(c'))
. o A n

form a basis of the space S(g)(Ker P(£)). Therefore the vector S(Z)u(0) may be

represented as a linear combination

¥o)u(0) = ¥o)xg(e vy + Box D @D+ 3o e wv{Pio) = 0,
where w. is a scalar and wél) is a (n-1)/2 dimensional column vector.

0
Then (UKC) implies that w, = w§l) (2)(

Also the vector %(E)u(o) may be considered as a linear function of

0) = 0 and estimate (9.47) is proved.
g, vII(o) and v_(0). We shall show that

(9.50) |B(e)u(0) | ekt &1 2+1v 2 (0)12+12v ) (0) [P+ vt (0) |2 |rarv(F) (0 |

Indeed, if g = viz)(o) =0and r = 0, we get as in the case z # 0 that
Bu(0) = 0. But for r = 0, Ker ?(5) = Ker %(n) > Ker B and hence P(g)u(O) =

Suppose now that the conditions in (9.49) are fulfilled. Then, according to
2
(9.47), v{2)(0) = 0 ana

w(0) = xy(e"vp(0) + XMy + x M (g )l o)exer Be).

Let us return to eguations (7.45) (A), (B) and introduce grid functions
v(x) and G(x) whose components are partitioned according to v(x) and G(x)

and given by:

~(1) _ (1) () _ ., (13) s(2) _ (2) ;(2)_\(2)

- - - , )
VO rz' VO, V rz Voo ’ VFl Fl ’ Fl VF]. s Vo =,
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and G(x) is expressed in terms of G(x) in the same way. The matrices Mj(c’) in

(9.31) should be replaced by

] Tt
R LY ™Mo
J
1 1 ]
szl/z MJ22

According to part d) of lemma 9.3, the matrix M321/z' is analytic in Q(cb).

Let us denote MJ = -I+rM3, MF = diag(Mo,Ml,...,Mt). Then equations (7.45) (A),

(B) become
(&) (EMp(2))vp(x) = Gplx)
(9.51) X

(B)  (I-M.(£")E v (x) = G (x) .

Let us note that the matrices Ms(c’) have the same eigenvalues as Ms(c'). There~-

fore there are symmetrizers RJ(C') such that

Re R (c')ﬁj(z') g =61

J

and
“* ' - - 2 * ' O ’\* ' - - - 2 2 1)
vy RJ(; )VJ 2 ‘VJI if Re «} < 0 and vy RJ(C )vJ e clvjl if Re k) > 0.

Then for sufficiently small r > 0 we obtain
M, (R, (0M (') - R, (g') 2 6rT .
5 (g*) J(c ) J(c ) j(c ) r
Defining

Ro(z') = —cI, R (3') = I, Ry(z') = diag(Ry(z'),R,(z"),...,R (¢'))

we obtain for ;'EQR(;b) the estimates (9.33) with MF replaced by MF and instead

of (9.3%) we have
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¥ - 22020 0 g2 o - ~ 2
veRp(E g 2 —e(lvy S vg[T) + vl v (endv, 2 [V |5
Applying to equations (9.51) (A), (B) the generalized energy method with the
symmetrizers RF(;') and R_(¢') we arrive at estimate (8.67). It follows from

definition of G(x) and the estimates concerning the rows of T-l(;') that
1G61° < KIFI2/r°. Estimate (9.47) may be written in a form
l2

(9.52) 1990012 + 190002 ¢ K([v (0% + |7 (0)]%).

Then choosing the constant ¢ in (8.67) small enough and substituting (9.52) in
(8.67) we conclude that -
~ 2 17 2

[V (0} ax « K(__;B‘_+ |e] Ax>‘
Then estimate (9.50) implies that

IF ll2

1Beu(0) ) 2ax < K{ {

r

)

From (9.40) and (9.43) one derives that |v(2)(0)|2Ax and |rz'vil (O)|2Ax are

bounded by Kane/re. Therefore
2 2
i
I?’(E)U(O)I‘?Ax < K(“Fg + lngAx) < K(I::—l + lgleAx) .
r

Using the last estimate together with (9.46) we obtain finally

2
('z|-1)nu32 + lﬁ(g)u(o)lgﬁx < K(?:r'l + |g|2Ax) .

Thus we have proved estimate (6.9) with lzo| =1,

It remains only to prove the necessity part of theorem 5.3. First let us

show that (UKC) is satisfied. We proceed as in subsection 8.3 in the case zé = 0.

Supposing that there exists a non-zero vector (VO(O),VI(O))' such that

+ JelPax + (v2000)7 + pree o))
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B(2)(Xp(e"Ivp(0) + X (2')v,(0)) = g(z') and glg)) =

we arrive at estimate (8.68) which implies that
", 2
[B(e)X(z")v(0)] < K|glz")]

where v__(0) = v (0} = Q. Slnce P(v) (l)(co) = 0 and, according to assump-

tion 9.3 the columns of X( (;O) are independent of KerP(w), it follows that

(2)(0) = 0. Therefore g(c )(X (; )v (0) + X&zco §l)(0)) 0. However, we

have assumed that the columns of §(c (X (cé),X%tcé)) are independent. Hence

v, (0) = (l)(o) 0 and (UKC) follows. Conditions 5.1 and 5.2 are proved in the
same way as in subsection 8.3. The only difference is that estimate (8.69) holds

now for all the components of Vie

——-
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10. Discussion.

In Part II we have investigated a specific difference approximation applied
to a very restricted class of mixed initial-boundary value problems with charac-
teristic boundary, while in Part I for the differential case a much wider class
of problems was resolved. The question arises: how may this investigation be gen-
eralized?

First let us describe the main obstacles which one encounters in the analysis
of a multidimensional difference approximation in the non-characteristic case.

We suppose that the x~matrix L(«x,£,z) associated with the difference scheme is
regular for any complex z, |z| 2 lyand real 0 £ £ ¢ 2n and has no infinite
eigenvalues. Since the work of Gustafsson, Kreiss at al [3] appeared, there seems
to be a general acceptance of the idea that the stability theory for the multi-
dimensional case possesses no difficulties, which are not encountered in the one-
dimensional case. Let us analyse carefully the theory in (3]. There are two main
problems resolved: the first is the block or normal form of thematrix M(z) proved
in their Theorems 9.1 and 9.3, and the second consists of the construction of a
symmetrizer in Lemma 13.1 for a perturbed Jordan cell in strictly non-~dissipat-
ive case. The matrix M(z) is obtained from L(x,z) by linearization ﬁ(K,Z) =

{ Ko(z) + le(z) and then M{z) = (Xl(z))—lko(z). Suppose that Izol = 1 and there

are eigenvalues of L(K,Zo) with |c| = 1. Theorem 9.1 claims that under Assump-

i tions 5.2 and 5.3 there exists an analytic transformation T(z) such that
| T(2)M(2)7"1(2) has the block form diag(My,My,. .. M,

Mj(z) as in (9.3)-(9.5). If we recall, for example, the matrix L(x,£,z) corres-

Y in (9.2) with the metrices

ponding to the Burstein difference scheme, then for § = 7 this matrix is diag-
onalizable and thus satisfies Assumption 5.3. However, when § 1is perturbed,
the matrix L(x,E,z) ceases to be diagonalizable and therefore the block form in

Theorem 9.1 may not be maintained. Next, Theorem 9.3 claims that if MJ(ZO)=KJI,

where |z0[ = lKJI =1, and H(MJ(Z)—KI)-lﬂ < K|]z]/(}z]-1) for any |z] > 1 and

[«| = 1, then there is a transformation TJ(Z) analytic in a neighbourhood of
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zZ = Zq such that
Tgl(z)MJ(Z)TJ(Z) = diag(LJ(z),Nj(Z))
with
|z](L;(z)LJ(z)-I) < -8(|2]-1)1 , lzl(Nz(z)Nj(z)—l) 2 8(]z]-1)1.

This theorem is entirely "one parametric", i.e. if M, depends on more parameters,

J
say z and &, then the theorem does not hold any more. Actually, in order
to get an appropriate block form for the matrix M(£,z) near the point (Eo,zo),

one should provide an additioaal parametrization of z-z,. and E-Eo as we have

done in Sections 8 and 9. However the success of such pgrametrization can not
be guaranteed.

Now let us analyse the construction of the symmetrizer in Lemma 13.1.
Because of the strict non-dissipativity, the double~sided resolvent condition
{13.6) holds and the existence of the symmetrizer follows easily by Ralston's
note. However, in multidimensional case such & symmetrizer should be constructed
also for dissipative schemes when the resolvent condition (13.6) is not valid.
Our theorem 8.1 in subsection 8.2 actually solves this problem.

Suppose that L{x,£,z) corresponds to a dissipative difference scheme (Burs-
tein scheme is not completely dissipative, e.g. at £ =w). Then the eigenvalues

IK = 1 are possible only when z =1, £ = 0 and «, = 1. The investigation of

Jl J

the block structure performed by us in subsection 8.1 may be applied to a general
dissipative difference scheme. Thus, together with our theorem 8.1 it provides

a complete solution (in the terms of the uniform Kreiss condition) for the stabi-
lity of a dissipative difference approximation applied to strictly hyperbolic
problems with non-characteristic boundary.

If the boundary is characteristic, in addition to the difficulties des-
cribed above, one faces the perturbation problem for a singular x-matrix. There
is no geqeral theory for this case. However, the following uniform singularity
canditién for the «x-matrix L{x,E,z) seems to be essential: if the determinant
IL(K,E,Z),E 0 for some €, 8and z,, then there is some analytic line z = r{£),

2 < £ ¢« Pn, with zy5 = f(go) such that the determinant vanishes identically
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along this line. For example, the Friedrichs type schemes or the original Lax~

Wendroff scheme do not satisfy this condition even in the case [Au+BB] z 0,

and because of that the corresponding x-matrices do not have an analytic block
structure. The same problem arises with the Burstein difference approximation
0 where b = const # 0 ~ this is, for example,

in the case |-BbI+Aa+Bg| =
the case of the shallow water zquations with matrices

0 ¢ O bOO)
A=1lc 0 of, B=1{0 b e .
0 0 O 0 ¢ bJ

However, the leap-frog scheme in this case possesses no difficulties. Although
it is hard to develop a general stability theory in the characteristic case, the

methods used in this work may be applied to any difference scheme with corres-

o

pending matrix L{«,£,z) being a polynomial of some linear combination oA+BB and

satisfying the uniform singularity condition.
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